
Discrete Optimization 00 (2011) 1–27

Discrete
Optimization

Branch Decomposition Heuristics for Linear Matroids

Jing Maa,1, Susan Marguliesc,1, Illya V. Hickse,1, Edray Goinsg,1

ajm11.rice@gmail.com
bDepartment of Management Science and Engineering, Stanford University

csusan.margulies@math.psu.edu
dDepartment of Mathematics, Pennsylvania State University

eivhicks@rice.edu
fDepartment of Computational and Applied Math, Rice University

gegoins@math.purdue.edu
hDepartment of Mathematics, Purdue University

Abstract

This paper presents three new heuristics which utilize classification, max-flow, and matroid
intersection algorithms respectively to derive near-optimal branch decompositions for linear ma-
troids. In the literature, there are already excellent heuristics for graphs, however, no practical
branch decomposition methods for general linear matroids have been addressed yet. Introducing
a “measure” which compares the “similarity” of elements of a linear matroid, this work reforms
the linear matroid into a similarity graph. Then, the classification method, the max-flow method,
and the mat-flow method, both based on the similarity graph, are utilized on the similarity graph
to derive separations for a near-optimal branch decomposition. Computational results using the
methods on linear matroid instances are shown respectively.

Keywords: linear matroid, branchwidth, branch decomposition, classification, max-flow

1. Introduction

Branch-decomposition and its associated connectivity invariant branchwidth were introduced
by Robertson and Seymour [1] as part of their graph minors project and played a fundamental
role in their proof of the Wagner’s conjecture. It has been shown that branch decompositions
open algorithmic possibilities for solving NP-hard problems for graphs. Theoretical work that
used (tree) decompositions to solve the NP-complete problems can be found in Bern et al. [2],
Courcelle [3], Arnborg et al. [4], and Borie et al. [5]. Most of the above theoretical work can be
applied to branch decompositions. In particular, Courcelle [3] showed that several NP-complete
problems can be solved in polynomial time using dynamic-programming techniques on input
graphs with bounded branchwidth. The original result is about bounded treewidth, the invariant
associated with tree decompositions of graphs–another byproduct of Robertson and Seymour’s

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 2

proof of Wagner’s conjecture. In contrast, the result is equivalent for bounded branchwidth, since
the branchwidth and treewidth of a graph bound each other by a constant factor [1].

When using the branch decomposition to solve graph problems, branch decompositions with
small width (i.e., order of the branch decomposition) are always desirable. In contrast, find-
ing optimal branch decompositions (branch decompositions with the smallest width possible) in
general is NP-hard [6]. As a result, a branch of researchers has been focusing on developing
practical heuristics that produce branch decompositions with small widths. In particular, there is
the eigenvector heuristic based on spectral graph theory proposed by Cook and Seymour [7] and
Hicks’ diameter method along with a hybrid of the two [8].

Encouraged by the benefits of branch decompositions for solving NP-hard graph problems,
researchers generalized the branch decomposition to any finite set where a symmetric submodu-
lar function is defined [9], intending to attack classes of NP-hard problems modeled on structures
other than graphs. For example, Cunningham and Geelen [10] proposed a branch decomposition-
based algorithm to solve integer programs with a non-negative constraint matrix. In contrast,
unlike branch decompositions for graphs, there has been much less work to derive near-optimal
branch decompositions for the general setting. Hence, the focus of this paper is to develop near-
optimal branch decomposition heuristics for linear matroids.

Most NP-hard graph problems can be modeled on linear matroids, by displaying the problems
in the form of matrices (e.g. node-edge incidence matrices). Moreover, the large class of integer
programming problems can be easily modeled on linear matroids, simply by associating the
constraint matrix of the integer program with a linear matroid. Thus, branch decomposition
theories can be applied to these graph and integer program problems via linear matroid easily.
Whenever in these occasions, the width of the branch decomposition is desired to be as small as
possible.

Taking the Cunningham-Geelen algorithm for example, the algorithm has a complexity of
O((d + 1)2kmn + m2n), where m and n are the number of rows and columns of the constraint
matrix, k is the width of the input branch decomposition, and d is a numeric value of the ma-
trix respectively. Thus, the solving time of the integer program using the Cunningham-Geelen
algorithm is subject to change according to the width of the input branch decomposition exponen-
tially. Generally, the smaller the width of the input branch decomposition, the faster the branch
decomposition based algorithm performs. In contrast, a result of Seymour and Thomas [6] in
conjunction with a result by Hicks and McMurray [11] (independently proven by Mazoit and
Thomassé [12] as well) implies that finding an optimal branch decomposition of the linear ma-
troid for a general matrix is NP-hard. Thus, to apply branch decomposition-based algorithms,
finding near-optimal branch decompositions is of practical importance.

Another area of motivation for practical algorithms for the branchwidth of linear matroids
is the relationship between the branchwidth of a binary matroid and the rankwidth of a fun-
damental graph of the matroid. Given a graph, rankwidth is the branchwidth of the cut-rank
function related to the graph [13]. Rankwidth is related to cliquewidth with the fact that graphs
have bounded rankwidth if and only if the graphs have bounded cliquewidth [13]. In addition,
Oum [14] has shown that the branchwidth of a binary matroid is exactly one more than the
rankwidth of its fundamental graph. Hence, work in this area offer practical algorithms for com-
puting the rankwidth of bipartite graphs.

Though the broad applications of branch decompositions, there are not many practical works
for finding the near-optimal branch decomposition for a general setting such as linear matroids,
in spite of success such as the eigenvector method and the diameter method for branch decom-
positions of graphs. In a previous work by Oum and Seymour [9], the authors constructed an

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 3

algorithm to estimate the branchwidth of a symmetric submodular function within a factor of
3. For example, the algorithm decides either the branchwidth is at least 6 or finds a branch de-
composition with width at most 15 for an instance with branchwidth being 5 [9]. Hence, the
error factor of three of Oum and Seymour’s method shows that it is not practical when applied
to branch decomposition-based algorithms. New practical methods are needed to derive branch
decompositions of linear matroids.

Inspired by the work of Belkin and Niyogi [15, 16] and its application to image processing
by Szlam et al. [17], we reform the linear matroid into a similarity graph. Their work considered
the data set as a finite weighted graph where the nodes of the graph represent elements in the
data set and two nodes are connected if and only if their corresponding data points are “similar”
enough under the similarity measure. In our work, basing on the similarity graph, three different
methods are developed and implemented.

In the classification method, the Laplacian-Eigenmaps-based partially labeled classification
theory by Belkin and Niyogi [15, 16] is introduced to derive branch decompositions. In their
work, Belkin and Niyogi consider the problem of classification under the assumption that the
data resides on a low-dimensional manifold within a high-dimensional representation space.
Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator
on the manifold, and connections to the heat equation, they proposed an algorithmic framework
to classify a partially labeled data set in a principled manner. The active role of graph Laplacian
in heuristics or approximation algorithms for problems whose exact solution is NP-complete
or coNP-complete has been strongly utilized in the literature. In the 1980s, Alon [18] showed
the significance of the eigenvector corresponding to the second smallest eigenvalue of the graph
Laplacian (see Chung [19] for definition of graph Laplacian), and supplied an efficient algorithm
for approximating the expanding properties of a graph. In the work of Shi and Malik [20], they
explored the eigenvector with the second smallest generalized eigenvalue of the graph Lapla-
cian to partition graphs. In Cook and Seymour’s eigenvector branch decomposition heuristic
for graphs, they use the eigenvector with the second smallest eigenvalue of the weighted graph
Laplacian before calling the max-flow algorithm to identify the source and sink nodes [7]. Clas-
sification, or partially labeled classification has previously been extensively applied in areas such
as machine learning, data mining, pattern recognition, but not yet in branch decomposition tech-
niques as an exclusive procedure without max-flow. Referring to Belkin and Niyogi’s algorithmic
framework, we construct a low-dimensional representation for the original high-dimensional el-
ements of the linear matroid, where eigenvectors of the Laplacian of the similarity graph are the
basis, and build classifiers for partitioning the element set of the linear matroid.

The max-flow method inherits the ingredients of the previous branch decomposition heuris-
tics [7, 8] and tree decomposition heuristics [21]. Based on the similarity graph, our work con-
tracts the similarity graph into its corresponding graph minors as the heuristic evolves, and picks
the small neighborhoods of a diameter pair (nodes having their distance equal to the diameter
of the minor) minimizing the number of paths between the pair. Each separation induced by the
output cut in the max-flow algorithm becomes a separation in the output branch decomposition.

The mat-flow method is similar to the max-flow method in that it utilizes the the small neigh-
borhoods of the nodes of the similarity graph to define subsets of the ground set of the input
matroid. In contrast, the mat-flow method uses the subsets derived from the similarity graph to
solve a series of matroid intersection problems on the minors of the input matroid to produce
separations for the branch decomposition. This technique is based upon the matroid version of
Menger’s theorem, proved by Tutte [22].

Throughout this paper, we assume that all graphs are simple and undirected unless otherwise

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 4

stated. One is referred to the books by Diestel [23] and Oxley [24] if unfamiliar with graph theory
and matroid theory, respectively. In addition, we will use the term ”node” to describe the nodes of
a graph in general and the term ”vertex” for branch decomposition trees. Fundamental definitions
are given in Section 2. In Section 3, The Pushing Lemma and The Strong Closure Corollary are
stated and proved. Then, a complete description of the branch decomposition heuristics: the
classification method, the max-flow method, and the mat-flow method follows in Sections 4 to 7.
Computational results using the methods on linear matroid instances are reported and compared
in Section 9. Concluding remarks and directions for future work are given in Section 10.

2. Preliminaries

In this section, we discuss foundation definitions that will be utilized in the proposed algo-
rithms. One necessary term is a minor of a graph. A graph H is a minor of a graph G if H can be
achieved from a subgraph G by a series of edge contractions (i.e., replacing an edge uv and its
ends by one node x). Other useful terms that are necessary to explain the algorithms are diameter
pairs and eccentricity pairs. The diameter of a graph G is the smallest number ψ such that the
shortest path between any nodes of G has distance at most ψ where the edges all have length
equal to one. A diameter pair of the graph G is a pair of nodes having their distance equal to ψ.
Similarly, one defines the eccentricity of a node w to be the smallest number η(w) such that the
shortest path between w and any other node of G is at most η(w). Furthermore, the pair (w, v)
forms an eccentricity pair for node w if the distance of any w, v-path is η(w).

2.1. Branch Decompositions
Although the paper focuses on the branchwidth of linear matroids, we deem it relevant to

define branch decompositions and branchwidth in terms of symmetric submodular set functions
because we offer theoretical results in this general setting.

Given some finite set E and some function f over E to the non-negative integers, the function
f is symmetric if f (X) = f (E \ X) for any subset X ⊆ E. The function f is submodular if
f (X ∩ Y) + f (X ∪ Y) ≤ f (X) + f (Y) for any X,Y ⊆ E. Let λ : 2E → Z+ be defined as
λ(X) = f (X) + f (E \ X) − f (E) + 1 for X ⊂ E and λ(∅) = λ(E) = 0 (using the convention of
Dharmatilake [25]). Note that the function λ is submodular and symmetric, that is, λ(X ∩ Y) +

λ(X ∪ Y) ≤ λ(X) + λ(Y) for all X,Y ⊆ E and λ(X) = λ(E \ X) for any X ⊆ E. This function λ is
called a connectivity function of f . A partition (X,Y) of E is called a separation, and its order is
defined to be λ(X).

A tree is an acyclic and connected graph. A vertex of degree 1 in the tree is called a leaf,
otherwise, the vertex is a non-leaf vertex or inner vertex. Given some finite set E and a symmetric
submodular function f defined over E, let T be a tree having |E| leaves and in which every non-
leaf vertex has degree at least three. Associate with each leaf w of T one of the elements of E,
say ν(w), in such a way that each element of E is associated with a distinct leaf (ν is a bijection).
The pair comprised of the tree T and the function ν, is a partial branch decomposition of f .
If each inner vertex of T has degree exactly three, then T is called cubic and the pair (T, ν) is
a branch decomposition. Under the conditions where T is cubic with at least | E | leaves and
ν is an injective function (one-to-one), then then the pair (T, ν) is called an injective branch
decomposition. Furthermore, if T is cubic but ν is a surjective function and T has at most |E|
leaves, then the pair (T, ν) is called an surjective branch decomposition. We will denote relaxed
branch decomposition to describe any of the four types of branch decompositions (exact, partial,
injective, surjective).

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 5

For a relaxed branch decomposition T , if T ′ is a connected subgraph of T and X ⊆ E is
the set given by the union of the labels for the leaves of T ′, then we say that T ′ displays X.
Also, the separation (X, E \ X) is displayed by a relaxed branch decomposition T if both X and
E \ X are displayed by T . If T ′ is a leaf (i.e., |X| = 1), then the corresponding separation
(X, E \ X) is called a leaf separation. Obviously, there are |E| such leaf separations in all for any
relaxed branch decomposition except surjective branch decompositions. For a relaxed branch
decomposition, the width of an edge e of T is defined to be λ(X) where X is the set displayed
by one of the components of T \ e, and without any confusion, the width of e can be written as
λ(e). Accordingly, the width of the relaxed branch decomposition (T, ν), denoted width(T), is
the maximum among the widths of its edges. Notice that any injective branch decomposition of
width k can be transformed into a branch decomposition of width k by deleting unlabeled (by ν)
leaves and contracting edges. Also, given a surjective branch decomposition (T̂ , ν̂) and a branch
decomposition (T, ν) of a symmetric submodular function f where every separation associated
with (T̂ , ν̂) is displayed in (T, ν), there is an injection from the edges of T̂ to those of T and there
is an injection from the vertices of T̂ to those of T . Both transformations will be beneficial in
Section 3. The branchwidth of submodular function f is the minimum among the widths of all
branch decompositions of f . Next, we prove a lemma that will also be beneficial in Section 3.

Lemma 1. Let (T̂ , ν̂) be a relaxed branch decomposition of f over E with width(T̂) ≤ k, for
some integer k > 0. Also, let λ̂ be the corresponding connectivity function and let (A1, B1) and
(A2, B2) be displayed by T̂ where A1 ∩ A2 = ∅. In addition, define A = A1 ∪ A2 and B = E \ A. If
(X1, X2) is displayed by T̂ , then λ̂(B ∩ X1) ≤ k or λ̂(B ∩ X2) ≤ k.

Proof: First, notice that if Xi ∩ A j , ∅ where i ∈ {1, 2}, j ∈ {1, 2}, then either
Xi ⊆ A j or A j ⊆ Xi. Secondly, notice that if Xi ⊆ A j where i ∈ {1, 2}, j ∈ {1, 2}, then
λ̂(B ∩ Xi) ≤ k. Hence, without loss of generality we can assume that A1 ⊆ X1 and
λ̂(A∩X1) ≥ λ̂(A). By submodularity, we have that λ̂(B∩X2) = λ̂(A∪X1) ≤ λ̂(X1) ≤ k.

2.2. Tree building

Given any partial branch decomposition, any of the leaf separations can always be induced
by deleting an edge incident to a leaf from the partial branch decomposition tree. Thus, the star
graph (a tree with only one inner vertex and all the other vertices adjacent to it) with a bijection
from the element set to its leaves, is a trivial partial branch decomposition. Given a star graph
with inner vertex v as an initial partial branch decomposition, if one finds a reasonable partition
(X,Y) of the set D, denoting the edges incident to the vertex v; split v into two vertices x and y,
making X incident to x and Y incident to y; and connect x and y by an edge e, then one would
have another partial branch decomposition. This procedure is called splitting a vertex. In this
new partial branch decomposition, all the previous separations obtained in the star graph are
preserved, and a new separation (X,Y) can be induced by deleting e from the new partial branch
decomposition. In addition, it is easy to see that the maximum degree has been reduced after such
a procedure. This gives a hint of how to proceed in order to produce branch decompositions.

After a closer look at the partial branch decompositions, one may find, as described above,
Ti+1 which preserves all the separations which can be induced in Ti. Thus, the width of Ti+1 is
always greater or equal to the width of Ti. In an algorithmic point of view, at each iteration i,
a vertex with “large” degree (more than 3) is picked and split in a way that hopefully keeps the
width of Ti+1 small.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 6

2-split

3-split

2 31

8

7 6 5

4v

2 31

8

7 6 5

4v

2
3

1

8

7
6

5

4

v

y

x

2 31

8

7 6 5

4x y

Figure 1: 2-split and 3-split

In the first iteration, a separation (A, B) is found such that |A|, |B| ≥ 2 and a new partial branch
decomposition (T2, ν) is created where ν is replaced by vertices x and y and edge (x, y) and x has
the leaves corresponding to A and y has the leaves corresponding to B. The above split is called
an initial split, and later splits are called sequential splits.

2.2.1. k-split
In the case of conducting a k-split of the vertex v of degree greater than three, let D be the

edge set incident with v in Ti. Also, suppose the heuristic partitions D into t nonempty subsets
X1, X2, ... and Xk. For every 1 ≤ j ≤ k where |X j| ≥ 2, generate a new vertex x j such that v and x j

are adjacent and replace v with x j for the edges in X j. We will keep the edges in X j incident with
v for any |X j| = 1 (see Figure 1 for example of 2-split and 3-split). The new tree Ti+1 is formed
by the above procedure. Moreover, (Ti+1, ν) is a partial branch decomposition. One may notice
that in the case of a 2-split, vertex v turns out to be of degree 2 in Ti+1, thus to keep Ti+1 a partial
branch decomposition, one needs to contract one of the edges of v before the next iteration. We
say that T j is extended from Ti for any pair of i and j, such that i < j (see Cook and Seymour [7]).

Figure 2 shows a sample tree building process which terminates in 3 iterations. The size
of the element set is 6. Using a 2-split and a 3-split, one goes from the star graph to the third
partial branch decomposition. Note that, every inner vertex of T3 has degree 3; T3 is a branch
decomposition. For the case in Figure 2, we have width(T1) ≤ width(T2) ≤ width(T3).

2.3. Matroid
Let E be a finite set and I be the family of subsets of E, called independent sets. We define

M = (E,I) to be a matroid if the following axioms are satisfied:

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 7

2-split 3-split

1
T

2
T

3
T

2

1 3

5
4 6

v

1

4

2 3

6

v w

5

v

4

5

6

3

2

1 x

y

w

Figure 2: Sample Tree Construction

M0 ∅ ∈ I
M1 If J′ ⊆ J ∈ I, then J′ ∈ I.
M2 For every H ⊆ E, every maximal independent subset of H has the same cardinality.

For a matroid M = (E,I), a dependent set is a subset of E that is not a member of I. A circuit of
a matroid is a minimally dependent subset (i.e., deleting any member results in an independent
set). In order to describe the mat-flow method, matroid minors have to be defined as well. Let
M = (E,I) be a matroid and let Y ⊆ E. Define I′ = {J | J ⊆ (E \ Y), J ∈ I}. The matroid
M′ = (E \ Y,I′) is the matroid arising by deleting Y and is denoted by M \ Y . Now, consider JY ,
a maximal independent subset of Y in I. Define Î = {J | J ⊆ (E \ Y), J ∪ JY ∈ I}. The matroid
M̂ = (E \ Y, Î) is the matroid arising by contracting Y and is denoted by M/Y . Hence, a matroid
M̄ is a minor of a matroid M if M̄ can be achieved by a series of contracting or deleting elements
of the ground set of M (order does not matter). For more explanations and examples of matroids,
please refer to Oxley [24].

Now, we would like to introduce the linear matroid. Let F be a field and A = (A1A2 · · · An)
be a matrix over F. Let the element set E be the column indices of A and I = {J ⊆ E :
the columns indexed by elements of J are linearly independent}. Then, this M = (E,I) is a
matroid, and a matroid of such kind is a linear matroid. A circuit of a linear matroid is the
set of indices of a minimal set of linearly dependent columns. Further, we define λ to be the
connectivity function of any matroid where f is the rank function of the matroid, denoted r (i.e.,
λ(X) = r(X) + r(E \ X) − r(E) + 1).

3. Pushing

Given some matroid, define that (T, ν) is k-extendible if there is some way to (repeatedly)
split the vertices of T having degree greater than three, to obtain a branch decomposition of width
equal to or smaller than k. Without loss of generality, we assume k to be the smallest width of
the branch decomposition from which the current partial branch decomposition can be extended
to. Given some matroid, define (T1, ν) to be the partial branch decomposition comprised of only
one non-leaf vertex (i.e., T1 is a star). Certainly (T1, ν) is k-extendible when k equals to the
branchwidth. In the i-th iteration, we desire to choose X and Y such that if (Ti, ν) is k-extendible

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 8

then so is (Ti+1, ν). If (Ti+1, ν) is also k-extendible, then the split from Ti to Ti+1 is a greedy
one. Repeatedly choosing separations with small orders, without regard to other considerations,
turns out to be too short-sighted in practice. Indeed, there might always be a “safe” way to split.
By “safe” we mean that if the current partial branch decomposition is k-extendible, then the new
partial branch decomposition will be k-extendible as well. We do not know how to check directly
if a given (T, ν) is k-extendible, thus, we need theoretical results, The Pushing Lemma and The
Strong Closure Corollary, to maintain the k-extendibility. The name “pushing” is comes from
Cook and Seymour [7], but their pushing lemma was proved only for graphs. Hence, we have
extended their result for any symmetric submodular function.

Let D be the edge set incident with v in Ti, and edges e1, e2 ∈ D be distinct edges. Consider
the 2-split of vertex v which partitions D into 2 subsets X = {e1, e2} and Y = D\X, makes edges
in X incident with a new vertex x and Y incident to a new vertex y and connects x and y. This
2-split of v yields a new partial branch decomposition Ti+1. Let λ(e1 ∪ e2) be the short form
representing the order of the separation induced by deleting the edge xy from Ti+1. Also, recall
that λ(e1) and λ(e2) are the orders of the separations induced by deleting e1 from Ti and deleting
e2 from Ti respectively.

Lemma 2. [The Pushing Lemma] Let f be any symmetric submodular set function over the set
E to the non-negative integers. Consider the partial branch decomposition Ti with λ defined on
its edges as the connectivity function for f . Let v be a vertex with degree more than three in Ti, D
be the set of edges in Ti incident with the vertex v and edges e1, e2 ∈ D be distinct edges. Suppose

λ(e1 ∪ e2) ≤ max{λ(e1), λ(e2)}, (1)

holds. Then taking the partition X = {e1, e2}, Y = D \ X of D for the 2-split of vertex v yields a
tree Ti+1 which is k-extendible if Ti is k-extendible, for some integer k > 0.

Proof: Let A1 be the set displayed by e1 in Ti not containing v, A2 be the set
displayed by e2 in Ti not containing v, A = A1 ∪ A2 and B = E \ A , ∅ (since v
has degree more than three). Without loss of generality, assume that λ(A1) ≥ λ(A2),
thus λ(A1) ≥ λ(A). Hence, (A, B) is a separation of order at most k. Since Ti is k-
extendible, there exists a branch decomposition (T, ν) of M extended from Ti, such
that width(T) ≤ k. If T displays A, we are done. Hence, we can assume that T does
not display A and we aim to construct a new branch decomposition T ′ such that A1,
A2 and A are displayed and width(T ′) ≤ k.

We can assume that T has degree-3 vertices and that k ≥ 2, as otherwise the lemma
holds trivially. If v is a vertex of T and e is an edge of T , let Xev denote the set of
elements of E displayed by the component of T \ e that does not contain v. Now, we
will use a slight variation of a result by Geelen et al. [26]. We offer the proof of the
claim such that the whole result is self-contained.

Claim 1. There exists a degree-3 vertex s of T with incident edges f1, f2 and f3 such
that, for each edge e of T , λ(Xes ∩ B) ≤ k, and none of X f1 s, X f2 s and X f3 s is a proper
subset of A1 or A2.

Proof: For this proof, we will use a surjective branch decomposition of
f derived from T to find the corresponding special node s. let T i denote

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 9

the subgraph of T \ ei that displays Ai and denote the end of ei in T i as
ui for each i ∈ {1, 2}. Now create (T̂ , ν̂) by T̂ = T \ ((T 1 ∪ T 2) \ {u1, u2})
and ν̂(e) = ν(e) if e < A1 ∪ A2 and ν̂(e) = ui if e ∈ Ai for each i ∈ {1, 2}.
Now, replace each edge of T̂ by a directed edge (maybe two). For e, an
edge of T̂ with ends u and v, if λ(Xev ∩ B) ≤ k, then replace e with the
directed edge uv. Notice that if λ(Xev ∩ B) ≤ k and λ(Xeu ∩ B) ≤ k, then
e is replaced with uv as well as vu. By Lemma 1, each edge of T̂ gets
replaced by a directed edge.
Notice that each edge incident with a leaf in (T̂ , ν̂) is replaced by two
directed edges. So, let us only consider the edges oriented away from
the leaves. Also, for any other edge not incident with a leaf but has
two orientations, we only consider one of the orientations. Now, T̂ is a
directed tree with each edge having only one orientation. Hence, T̂ has
more vertices than edges. By the pigeonhole principle, there is a vertex
s with no outgoing edges. By the assumption of only considering edges
oriented away from the leaves, s is not a leaf. Furthermore, s is also the
correct node for T since there is an injection from the nodes of T̂ to the
nodes of T . Also, by the construction of T̂ , s ∈ T also has the property
that none of X f1 s, X f2 s and X f3 s is a proper subset of A1 or A2.

Let s be the vertex satisfying Claim 1 and let Xi denote X fi s for each i ∈ {1, 2, 3}.
As in the proof of Claim 1, let T i denote the subgraph of T \ ei that displays Ai and
denote the end of ei in T i as ui for each i ∈ {1, 2}. Now, there exists i0 ∈ {1, 2, 3},
such that Xi0 ∩A1 , ∅. Say, i0 = 1. Thus, X1∩A = A1, or X1∩A = A. In either case,
λ(X1∩A) ≥ λ(A). Then by submodularity, λ((X2∪X3)∩B) = λ(X1∪A) ≤ λ(X1) ≤ k.
Now, we are ready to construct an injective branch decomposition T̄ of width at most
k that displays A1, A2 and A. First, create a copy of T 1 and T 2, including the labels.
Next, remove all the labels of A from the leaves in T . In addition, subdivide f1 to
create a new vertex b and make b adjacent to u1 and u2 from the copies of T 1 and T 2

to make T̄ . Notice that T̄ can easily be transformed into a branch decomposition T ′

with width most k and that displays A1, A2 and A. Thus, Ti+1 is k-extendible.

Inequality (1) is called the pushing inequality. In addition, the 2-split described in The Push-
ing Lemma is called a “push”. The approach used in the proof was influenced from a proof
offered by Geelen et al. [26]. Figure 3 is illustrated as an example of applying The Pushing
Lemma. In Figure 3, D = {xy, 2y, 3y, 4y, 5y, 6y, 7y}, e1 = xy, e2 = 7y, and λ(e1 ∪ e2) , λ(xy) in
Ti+1, suppose λ(e1 ∪ e2) ≤ max{λ(e1), λ(e2)}, then taking the partition X = {e1, e2}, Y = D \ X
of D for the 2-split of vertex v yields a new tree Ti+1. Thus, by The Pushing Lemma, Ti+1 is
k-extendible if Ti is k-extendible.

Before introducing the corollary, we will first introduce some notations and definitions to
simplify later statements. Let D be the edge set incident with vertex v in partial branch decom-
position (Ti, ν) which has degree greater than 3, and let e, f ∈ D be distinct edges. The strong
closure of any edge e in D is defined to be Co(e) , { f ∈ D | λ(e ∪ f) ≤ λ(e)}. Let e1 ∈ D
with Co(e1) = { f1, f2, · · · fs}. For 1 ≤ j ≤ s, generating a new vertex x j which is made incident
with e j and f j; keeping D′ = D \ { f1, · · · f j} incident with vertex v; and connecting x j and v by a
new edge e j+1 yields partial branch decomposition Ti+ j. This partial branch decomposition Ti+ j

is called element-wise-pushed from Ti with respect to the strong closure of e1.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 10

1i
T
+i

T

 Pushing

2 31

8

7 6 5

4x y

2
3

1

8

7 6 5

4x yw

Figure 3: An Example of Applying The Pushing Lemma

 Pushing

i
T

2 31

8

7 6 5

4x y
Co(xy)={2y, 7y}

2
3

1

8
7 6 5

4x ywu

1i
T
+

Figure 4: An Example Application of The Strong Closure Corollary

Corollary 1. [The Strong Closure Corollary] Let D be the edge set incident with vertex v in
partial branch decomposition (Ti, ν). Given e1 ∈ D with Co(e1) = { f1, f2, · · · fs}, for 1 ≤ j ≤ s,
element-wise-push a partial branch decomposition Ti+ j from Ti with respect to the strong closure
of e1. Then, Ti+ j is k-extendible if Ti is k-extendible and width(Ti+ j) ≤ width(Ti).

Proof: If |Co(e1)|=1, then it follows directly from The Pushing Lemma. Thus,we
can assume the corollary is true for j > 1. For Co(e1) = { f1, f2, . . . f j+1}, define
A(j) , e1 ∪

⋃t= j
t=1 ft. By the submodularity, we have λ(A(j+1)) ≤ λ(A(j)) + λ(e1 ∪

f j+1) − λ(e1) ≤ λ(A(j)). By The Pushing Lemma, Ti+ j+1 is k-extendible because Ti+ j

is k-extendible.

In Figure 4, D = {xy, 2y, 3y, 4y, 5y, 6y, 7y}, e1 = xy and suppose Co(e1) = {2y, 7y}, then
the following operations would generate a new partial branch decomposition Ti+1: generate a
new vertices u and w; replace xy, 2y and 7y with xu, uw, wy, 2u and 7w; and keep D′ = D \
{2y, 7y} incident with vertex y. By The Strong Closure Corollary, Ti+1 is k-extendible if Ti is
k-extendible. Notice that 2u and 7w could be replaced with 2w and 7u and the new partial branch
decomposition would still be k-extendible if Ti is k-extendible.

4. Similarity graph

This paper focuses on the heuristics for finding near-optimal branch decompositions. In the
following discussion, we will always focus on linear matroid M = (E,I) associated with matrix

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 11

A = (A1A2 · · · An) ∈ Fm×n, where F is the field. Thus, the element set E = {1, 2, ...n}.
A branch decomposition can be regarded as a global arrangement of the elements in the

element set E. Recall Section 2.2. The heuristics derive a branch decomposition after several
iterations of incorporating separations to partial branch decompositions. As stated before, the
width of the partial branch decomposition may grow after each iteration. Thus, the difficulty is
how to introduce low order new separations when pushing is unavailable such that the width of
the new partial branch decomposition stays small. To tackle the above difficulty, we developed
three methods: the classification method, the max-flow method and the mat-flow method, all use
the similarity graph in some fashion. To introduce the similarity graph, one needs to define the
similarity measure first.

For an edge e of T , recall that the order of the separation (X,Y) induced by T \ e is λ(X) =

r(X) + r(E \ X) − r(E) + 1. Thus, a “good” partition (X,Y) always features a small similarity
between the spanning space of sets displayed by X and Y . From now on, we will say “X” instead
of “the columns displayed by X” and “column” instead of “the column indexed by the element”
for convenience.

No matter what method is chosen to generate a separation of the branch decomposition, the
above “similarity” between the spanning space of X and Y is desired to be small. Thus, there
should be a way to qualitatively measure the “similarity” between the elements of the matroid.
Particularly, we identify the similarity measure between two columns by the potential of the
subspaces generated by a set including each column being near-parallel (i.e., the value of sine
of the angle between the two columns). Thus, given an initially labeled set B ⊆ E, which is
comprised of the set BX of elements from X and the set BY of elements from Y . Intuitively, by
putting the most similar columns to BX in X, and the most similar columns to BY in Y , one can
expect a small λ(X).

Let 1, 2, . . . , n be the nodes of the similarity graph. For vectors over the reals, we define
the distance between node i and node j to be the sine of the angle between Ai and A j (i.e.,

dist(i, j) =

√
1 − (Ai·A j

‖Ai‖‖A j‖
)2). For vectors over a Galois field, we have to devise a similar measure

of sine for this vector space which we discuss in the subsequent section. Nodes i and j are
adjacent in the graph if and only if i is among γ nearest neighbors of j or j is among γ nearest
neighbors of i for parameter γ ∈ N, and the distance between i and j is strictly less than 1.
The parameter γ is very important for the both heuristics. Small γ may cause a disconnected
similarity graph although the original input graph is connected. Large γ may cause the diameter
of the similarity graph or its minors to be so close to one that all the separations would have equal
value.

For a sequential split in the k-th iteration, let v be the vertex to split in the iteration k, and D
be the edges incident to v in Tk. For each edge e in D, delete e from T , choose the component
Te of T without vertex v, and denote the elements displayed by Te to be Ae. If |Ae| ≥ 2, identify
the nodes in Ae into one node ve, else ve represents Ae. An edge is placed between vei and ve j

if and only if there exists some node in Aei and some node in Ae j connected to each other in the
similarity graph. As a result, the constructed graph Gv can be derived from the similarity graph
by node identification.

5. Galois Cosine

When working with vectors over the real numbers, there are well-established conventions
for determining the “distance” between two vectors. For example, given vectors ~u,~v ∈ Rn, the

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 12

standard dot product ~u · ~v = |~u||~v|cos(θ) gives a measurement of the “difference” between two
vectors. Yet, when the two vectors ~u and ~v have entries over some finite field (i.e., ~u,~v ∈ Fn

q),
such “distance” or “difference” measurements become meaningless. In this section, we define a
special “cosine” function which attempts to describe the distance between two vectors in a finite
field. The reader is referred to the work of Dummit and Foote [27] for unfamiliar terms discussed
in this section.

Definition 1. Fix an irreducible polynomial Φ(x) of degree n such that

(a) Φ(x) divides xqn
− x in the polynomial ring Fq[x], and

(b) x mod Φ(x) is a generator for the cyclic group consisting of the non-zero elements in
GF(qn) = Fq[x]/〈Φ(x)〉.

Recall that any vector ~u ∈ Fn
q maps to an element of GF(qn) = Fq[x]/〈Φ(x)〉 via the following

transformation:

~u = (u0, . . . , un−1) ∈ Fn
q =⇒ u0 + u1x + u2x2 + · · · + un−1xn−1 ∈ GF(qn) = Fq[x]/〈Φ(x)〉

Note that we have chosen Φ(x) such that x mod Φ(x) is a generator for the cyclic group consisting
of the non-zero elements in GF(qn). Therefore, each of the polynomials (u0 + u1x + u2x2 + · · · +

un−1xn−1) and (v0 + v1x + v2x2 + · · · + vn−1xn−1) has an associated integer eu and ev such that

(u0 + u1x + u2x2 + · · · + un−1xn−1) ≡ xeu ≡ 0 mod Φ(x) ,

(v0 + v1x + v2x2 + · · · + vn−1xn−1) ≡ xev ≡ 0 mod Φ(x) .

Then, for each pair of nonzero vectors ~u,~v ∈ Fn
q, we can find an integer e such that Φ(x) divides

(u0 + u1x + u2x2 + · · ·+ un−1xn−1)− (v0 + v1x + v2x2 + · · ·+ vn−1xn−1)xe in Fq[x]. Finally, we define

cosΦ(~u,~v) = cos
(

2πe
(qn − 1)/(q − 1)

)
.

When defined in this way, this special cosΦ has several different useful properties. Since these
properties are easily derived, we present them without a proof.

Proposition 1. Let ~u and ~v be vectors in Fn
q.

(a) Symmetry: cosΦ(~u,~v) = cosΦ(~v, ~u) .

(b) Homothety: cosΦ(λ~u, ν~v) = cosΦ(~u,~v) for any non-zero scalars λ, ν ∈ Fq .

(c) Nondegeneracy: cosΦ(~u,~v) = 1 if and only if ~v = λ~u for some non-zero scalar λ ∈ Fq .

(d) For the basis vectors ~ei and ~e j, we have the values

cosΦ(~ei, ~e j) = cos
(

2π(i − j)
(qn − 1)/(q − 1)

)
.

We note that the third and fourth properties are somewhat undesirable. Given a vector ~u ∈ Fn
q,

we see by the third property that cosΦ(~u,±~u) = 1. Thus, u and −~u are at the same “angle”. Thus,
this definition does not allow for the concept of “opposite directions”. Furthermore, the fourth
property shows that the canonical basis vectors are not orthogonal with respect to this measure
of “angle”. Here is a concrete example.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 13

Example 1. Let q = 3 and n = 2. We must choose an irreducible polynomial Φ(x) such that
Φ(x) divides xqn

− x, and x mod Φ(x) is a generator for the cyclic group of non-zero elements in
GF(qn) = Fq[x]/〈Φ(x)〉. We note that

xqn
− x

xq − x
= (x2 + 1)(x2 + x − 1)(x2 − x − 1) .

Although each of these polynomials is irreducible over F3, when we consider x2+1 as a candidate
for Φ(x), we note that x, x2, x3 and x4 are congruent to x, 2, 2x and 1 mod Φ(x), respectively.
Thus, the order of x in GF(qn) = GF(32) = GF(9) is 4, not 8. In contrast, x has order 8 when
considered either mod(x2 + x − 1) or mod(x2 − x − 1). Thus, either x2 + x − 1 or x2 − x − 1 are
reasonable candidates for Φ(x), since they are both irreducible and primitive. For this example,
we choose Φ(x) = x2 + x − 1. Then we see the following:

~u = (0, 1) =⇒ x =⇒ x1 ≡ x mod (x2 + x − 1)

~u = (0, 2) =⇒ 2x =⇒ x5 ≡ 2x mod (x2 + x − 1)

~u = (1, 0) =⇒ 1 =⇒ x0 ≡ 1 mod (x2 + x − 1)

~u = (1, 1) =⇒ 1 + x =⇒ x7 ≡ 1 + x mod (x2 + x − 1)

~u = (1, 2) =⇒ 1 + 2x =⇒ x2 ≡ 1 + 2x mod (x2 + x − 1)

~u = (2, 0) =⇒ 2 =⇒ x4 ≡ 2 mod (x2 + x − 1)

~u = (2, 1) =⇒ 2 + x =⇒ x6 ≡ 2 + x mod (x2 + x − 1)

~u = (2, 2) =⇒ 2 + 2x =⇒ x3 ≡ 2 + 2x mod (x2 + x − 1)

Since (qn − 1)/(q − 1) = 4, we can use the differences of the exponents above to compute the
following tables of cosines:

cosΦ(x)(~u,~v) = cos
(πe

2
)

(1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
(1, 0) 1 1 0 0 −1 0 −1 0
(2, 0) 1 1 0 0 −1 0 −1 0
(0, 1) 0 0 1 −1 0 1 0 −1
(1, 1) 0 0 −1 1 0 −1 0 1
(2, 1) −1 −1 0 0 1 0 1 0
(0, 2) 0 0 1 −1 0 1 0 −1
(1, 2) −1 −1 0 0 1 0 1 0
(2, 2) 0 0 −1 1 0 −1 0 1

2

We implemented this method in Matlab and used the function gfprimdf(n) for generating the
irreducible polynomial. The experimental results using this approach for binary matroids are
detailed in Section 9.

6. The classification method

In this section, we are introducing the Laplacian Eigenmap techniques of data classification
to our branch decomposition heuristics. The linear matroid M = (E,I) is associated with matrix

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 14

A = (A1A2 · · · An) ∈ Fm×n with element set E = {1, 2, ...n}. Regard {A1, A2, · · · , An} as the data
set to be classified. Also, let k > 0 be some integer parameter indicating the desired number of
partitions. A complete subroutine of classification can be divided into the following 5 steps.
Step 1: Construct the similarity graph

For vertex v of T with degree higher than 3, we construct Gv as described in Section 4.
Step 2: Choosing the weights

Let W denote the adjacency matrix of Gv.
Step 3: Computing the eigenfunctions of the Laplacian

For the initial split, assume the graph Gv is connected. Otherwise proceed with step 3 for each
connected component. Compute eigenvalues and eigenvectors for the generalized eigenvector
problem

L f = λD f, (2)

where D is the diagonal weight matrix, and its entries are column sums of W, Dii =
∑

j W ji.
L = D −W is the Laplacian matrix. Laplacian is a symmetric, positive semidefinite matrix that
can be thought of as an operator on functions defined on the vertices of G.

Let f0, · · · , fn−1 be the solutions of equation 2, ordered according to the generalized eigen-
values:

L f0 = λ0 D f0

L f1 = λ1 D f1

...

L fn−1 = λn−1 D fn−1

(3)

where 0 = λ0 ≤ λ1 ≤ ... ≤ λn−1. We leave out the eigenvector f0 corresponding to eigenvalue 0
and use the p eigenvectors corresponding to the p smallest non-zero eigenvalues for embedding
in p-dimensional Euclidean space.
Step 4: Building the classifier

If k ≥ 2, pick the initially labeled set; let Ci, i ∈ {1, · · · , k}, be the classes; let Clab
i

be
the labeled elements in the i-th class; and let clab

i
be the characteristic function of those Ci (i.e.,

clab
i

(x) = 1 if x ∈ Ci, and clab
i

(x) = 0 otherwise).
Given a specific class Ci, to approximate the class, one needs to minimize the error function

Err(ai) =
∑s

j=1(ci(x j)−
∑p

l=1
ai(l) fl(j))2, where s is the cardinality of the labeled set, and with-

out loss of generality the labeled set is denoted to be {1, 2, ..., s}. The minimization is considered
over the space of coefficients ai = (ai(1), ..., ai(p)). The solution is given by

ai = (ET
lab

Elab)−1ET
lab

clab
i (4)

where clab
i
= (c1, c2, ..., cs)T and Elab is an s × p matrix whose q, r entry is fr(q). Also,

ui =
∑p

j=1
ai(j) f j for any i ∈ {1, 2, · · · , k}. The vector ui is called an extended label of the i-th

class.
Step 5: Classifying unlabeled elements

For k ≥ 3, assign the j-th element to the class argmaxiui(j).
Hence, the aforementioned steps form the k-classification subroutine; according to k, the

nodes of Gv are partitioned into k classes.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 15

6.1. Applying the classification method and pushing

In the initial split, first construct the similarity graph G of the linear matroid, then compute
the diameter pairs of G. There might be multiple diameter pairs. For each diameter pair (i, j), sort
all of the nodes such that their distance to i is in non-decreasing order. Let A be the dδ|V(G)|e first
terms and B be the dδ|V(G)|e last terms of the sorted list of nodes where δ is some predetermined
parameter. Given A, B ⊆ V(G), use the 2-classification subroutine to compute a separation
(X, Y) of G such that A ⊆ X, B ⊆ Y. Among the separations computed for all the diameter
pairs, pick the separation that gives the minimum order and use that separation for a 2-split to
construct T2.

For a sequential split in the k-th iteration, let v be the vertex in Tk to split in the iteration
k, and D be the edges incident to v in Tk, construct the corresponding minor of the similarity
graph Gv. In D, there should be only one edge not incident to a leaf, and denote this edge
and its corresponding separation by e and (X, Y). Without loss of generality, assume that X =
{x1, · · · , xN} are the leaves adjacent to v. Then Gv should be of size N + 1, with a node s
identified from Y in G and each one of the other nodes representing a node from X. For each
node1 in Gv that form an eccentricity pair for s, find node2 in Gv to create a pair (node1, node2)
where node2 is distinct from s and either the pair (s, node2) forms an eccentricity pair for s or
the pair (node1, node2) forms an eccentricity pair for node1.

For each pair (node1, node2), let node1 and the indices in Y together be the labeled elements
in the first class, compute the extended label u1 of the first class using the formula in Step 4. Let
node2 and Y together be the labeled elements in the second class, compute the extended label
u2 of the second class using the formula in Step 4. Compare the two extended labels and assign
the element j to the class i, i ∈ {1, 2} having greater value of ui(j). Thus, X is split into the part
in the first class W1 and the part in the second class W2, and correspondingly (X ∪W1,W2) and
(X ∪ W2,W1) are two separations of the element sets. Also, extended labels u1 for separation
(X ∪W2,W1) and u2 for separation (X ∪W1,W2) are stored. In T2, connect vertex v with 3 new
vertices x1, x2 and x3, keep the edges in Y incident with x1, W1 incident with x2 and W2 incident
with x3. For any 1 ≤ i ≤ 3, generate a new edge xiv between xi and v and the partial branch
decomposition Tk+1 is formed.

After the initial split (X, Y) of the current classification method, one can compute the strong
closure of the X and Y, and push the elements in the closure, then continue classification. For
the sequential splits, we try applying The Strong Closure Corollary first and then use the classi-
fication method to find a split if the closures are all empty.

6.2. Justification

The Laplacian eigenmaps handle the problem of embedding the similarity graph into p-
dimensional Euclidean space. The embedding is given by the n × p matrix Y = [y1y2, · · · , yp],
where the i-th row provides the embedding coordinates of the i-th node. It provides a choice to
minimize the following objective function,∑

i j
||y(i) − y(j)‖2Wi j = t r(YT LY),

where y(i) = [y1(i), · · · , yp(i)]T is the p-dimensional representation of the i-th node, under appro-
priate constraints. The objective function with our choice of weights Wi j incurs a heavy penalty
if neighboring points xi and x j are far apart. Therefore, minimizing it is an attempt to ensure that
if xi and x j are “close”, then y(i) and y(j) are close as well. This reduces to finding

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 16

arg min
YT DY=I
YT D1=0

t r(YT LY).

The constraint YT DY = I prevents collapse onto a subspace of dimension less than p, and by the
constraint YT D1 = 0 we require orthogonality to the constant vector. Standard methods show
that the solution is provided by the matrix of eigenvectors corresponding to the lowest non-zero
eigenvalues of the generalized eigenvalue problem Ly = λDy [16].

6.3. Connection to the eigenvector method

It is worthwhile to mention that in Cook and Seymour’s eigenvector branch decomposition
heuristic for graphs, they use Laplacian eigenmaps too, though just for identifying the source and
sink nodes before calling the max-flow algorithm. For this section, let us consider the classifica-
tion method only on graphs. Unlike our case that the adjacency matrix of the similarity graph is
the weight matrix for the line graph L(G) of the input graph G, they use Wi j =

∑
(deg(u)−1)−1 :

u ∈ V and i, j ∈ ad j(u) if distinct i and j are connected in L(G), else Wi j = 0. We compute the
Laplacian only once before the initial split, and then use the same p eigenvectors of the Lapla-
cian as basis of the maps in every split when pushing is unavailable for the entire method. In
contrast, they compute the weighted Laplacian in every initial and sequential splits when push-
ing is unavailable and use the only eigenvector corresponding to the second smallest eigenvalue
of the Laplacian every time. Of course, the way they choose their weighted matrix makes the
eigenvector method inapplicable to the setting of linear matroids, in general.

7. The max-flow method

The max-flow method inherits the ingredients of the previous branch decomposition heuris-
tics [7, 8] and tree decomposition heuristics [21] and is utilized on the similarity graph. For clar-
ity, the max-flow method utilizes a modified version of the shortest augmenting path algorithm
for the max-flow problem to compute an edge version of Menger’s Theorem (see Diestel [23])
where is the object is to find the minimum edge cut that separates all u, v-paths for some pair of
nodes u and v in the input graph.

Let the linear matroid M = (E, I) be associated with matrix A = (A1 A2 · · · An) ∈ Fm×n

with the element set E = {1, 2, ...n}. A complete subroutine of the max-flow method can be
divided into the following 3 steps.

7.1. Max-flow subroutine

Step 1: Construction of the similarity graph
For the initial split and sequential splits, we construct Gv as described in Section 4.

Step 2: Compute diameter and diameter pairs
Compute the diameter of the current graph Gv and the diameter pairs.

Step 3: Compute the separation using max-flow
There might be multiple diameter pairs. For each diameter pair (i, j), sort all of the nodes

such that their distance to i is in non-decreasing order. Let A be the dδ|V(Gv)|e first terms and B
be the dδ|V(Gv)|e last terms of the sorted list of nodes where δ is some predetermined parameter.
Given A, B ⊆ V(Gv), use max-flow algorithm to compute a separation (X, Y) of Gv such that
A ⊆ X, B ⊆ Y and E(X, Y) i.e., the cut between X and Y, is minimized. Among the separations
computed, pick the separation with the minimum order and split v using this separation.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 17

7.2. Applying the max-flow method and pushing

For the initial split, run the 3-step max-flow subroutine. In the i-th sequential splits, for
splitting a vertex v, denote the edges incident to v in the current partial branch decomposition Ti−1
to be D, compute strong closures for all the edges in D and push according to The Strong Closure
Corollary. If the strong closures are all empty sets, apply the max-flow method again to generate
a new partial branch decomposition. Repeat splitting vertices until a branch decomposition is
formed.

8. The mat-flow method

The mat-flow method is very similar to the max-flow method but it is unique in its own right.
The mat-flow method utilizes the matroid version of Menger’s Theorem, proved by Tutte [22].
This theorem states that given two disjoint subsets A and B of E, the ground set of matroid M,
the maximum size of a common indepdent set in M \ A/B and M \B/A is equal to the minimum
value of r((X) − r(A) + r(Y) − r(B), where r(∗) denotes the rank function, taken over all sets
X with A ⊆ X ⊆ E \ B. For clarity, one needs only to solve a matroid intersection problem to
derive the corresponding sets X and Y. We used the algorithm posed by Cunningham [28] for
solving matroid intersection problems.

Another distinction in the mat-flow method is that with the exception of the initial partial
branch decomposition, every non-leaf node has only one edge which is not incident to a leaf.
Hence, all sequential splits are 3-splits with v’s non leaf edge being in a partition by itself. A
complete description of the mat-flow method is given below.

8.1. Mat-flow subroutine

Step 1: Construction of the similarity graph
For only the initial split, we construct Gv as described in Section 4.

Step 2: Compute distance matrix
For only the initial split, compute the all pairs distance matrix D of Gv.

Step 3: Compute the separation using max-flow
For initial and sequential splits, use D to compute pairs (i, j) with the longest distance in D

where i and j are leaves of Gv, say Lv. Also without any loss of ambiguity, let H denote E \ Lv
(H = ∅ for the initial split). For each pair (i, j), sort all of the nodes such that their distance
to i is in non-decreasing order. Let A be the dδ|Lv|e first terms and B be the dδ|Lv|e last terms
of the sorted list of nodes where δ is some predetermined parameter. Given A, B ⊆ E and H,
use the matroid intersection algorithm over M \ B/(A ∪ H) and M \ A/(B ∪ H) to compute
a separation (X, Y) of Lv such that A ⊆ X, B ⊆ Y. The order associated with (X, Y) is the
maximum of λ(X ∪ H) and λ(Y ∪ H). Among the separations computed, pick the separation
with the minimum order and split (2-split if H = ∅ and 3-split if not) v using this separation.

8.2. Applying the mat-flow method and pushing

For the initial split, run the mat-flow subroutine. In the i-th sequential splits, for splitting a
vertex v, denote the edges incident to v in the current partial branch decomposition Ti−1 to be
D, compute strong closures for only the non-leaf edge in D and push according to The Strong
Closure Corollary. If the strong closure is the empty set, apply the mat-flow method again to gen-
erate a new partial branch decomposition. Repeat splitting vertices until a branch decomposition
is formed.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 18

9. Computational Results

The computer codes were written in Matlab and all computations were run on a Sun Ultra
24 Workstation (3.0Ghz). For the classification method, the key is to map the original high-
dimensional elements into a lower dimensional space, a space spanned by the p most significant
eigenvectors of the normalized Laplacian. Hence, more information is preserved after the Lapla-
cian mapping with a larger value of p. In contrast, if the value of p is too large then one may
include some useless noise to the Laplacian mapping. To balance the significant information and
the useless noise, we use p = 2×d m

500e+4 for all the instances in the tables, where m is the num-
ber of columns. Although the performance of the classification method does not significantly
depend on the specific choices of γ and δ, we use the following parameters to be consistent with
the max-flow method for all test instances: γ = 4; δ = 1

3 for the initial split; and δ = 1
7 for the

sequential splits. For the max-flow method and the mat-flow method, we use γ = 4 and δ = 1
3

for instances in the tables. Note that small γ for the max-flow and mat-flow method may cause
unconnected similarity graphs although the original graph is connected. Large γ may cause the
diameter of the similarity graph minor to become one; the max-flow method may be inefficient
in that case.

In Tables 1, 2, 3, 4, 5, and 6, each instance is named in the first column. The second column
and the third column are the size of matrix associated with the linear matroid instance. The
fourth column is the branchwidth of the linear matroid instance. The last six columns report the
output width and computational time for the methods. Branchwidth is denoted by β in the tables
for simplicity. Furthermore, for the instances of the methods over graphs, an “NP” in a column
means that the instance graph was non-planar and the branchwidth is unknown.

Table 1: Results of the methods for binary matroids using Galois sine
classification method max-flow method

Names rows columns β Gtime width time(s) width time(s) width time(s)
V8 7 12 4 .023 5 0.118 4 0.285 5 0.272
R10 5 10 4 .001 5 0.047 5 0.043 5 0.046
N23 5 10 4 .001 5 0.015 5 0.019 5 0.087
N11 4 10 4 .001 5 0.016 4 0.041 4 0.093
K5 4 10 4 .001 4 0.016 4 0.019 5 0.032
dV8 5 12 4 .001 6 0.020 6 0.034 5 0.057

dN11 6 10 4 .003 4 0.021 4 0.021 4 0.089
dK5 6 10 4 .003 5 0.018 4 0.021 4 0.296

3-grid 5 9 3 .001 4 0.015 4 0.016 3 0.091
4-grid 8 16 4 .041 6 0.048 7 0.121 5 0.310
5-grid 13 25 5 832 7 832 9 832 9 832

First, let us examine the performance of calculations utilizing a sine function for vectors in
Galois fields, detailed in Section 5. Although this measure can be adapted to any Galois field,
we only considered binary matroids (i.e. GF(2n)). These results are given in Table 1 where
the first three columns describe the matroids; β gives the branchwidth; Gtime gives the time

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 19

just to compute the Galois sine between every pair of vectors; and the final columns give the
results of the corresponding methods. To further explain the matroids, the first eight matroids
are binary matroids in the obstruction set for matroids of branchwidth three (see [29]). Hence,
they all have branchwidth equal to four. The matroid R10 as well as N23 are self-dual. The
grid matroids are binary matroids derived according to the fact that the corresponding n × n
grid is the matroid’s fundamental graph. These matroids have branchwidth equal to n, a result
of Oum [14] relating branchwidth and rankwidth in conjunction with the result of Jelinek [30]
on the rankwidth of grids. As seen from Table 1, the time for computing the Galois sine grows
exponentially, overshadowing the time to compute widths of the heurisitics. This is a drawback
of conducting Galois computations using Matlab. Since these methods are heuristics, for further
computations for all binary matroids we just use the sine over real vectors (where each vector
in the Galois field is mapped to the same identical vector in the reals) to approximate the Galois
sine. Table 2 gives these results for the same binary matroids of Table 1 plus others we were not
able to compute in a reasonable time frame (2 days) using the Galois sine approach.

Table 2: Results of the methods for binary matroids using real sine
classification method max-flow method mat-flow method

Names rows columns β width time(s) width time(s) width time(s)
V8 7 12 4 5 .018 5 .076 5 0.06
R10 5 10 4 4 .0138 5 .058 4 0.12
N23 5 10 4 5 .014 4 .047 4 0.1
N11 4 10 4 5 .013 4 .048 4 0.08
K5 4 10 4 4 .014 4 .035 4 0.08

dV8 5 12 4 6 .017 5 .077 4 0.06
dN11 6 10 4 5 .024 4 .083 4 0.04
dK5 6 10 4 5 .282 4 .196 4 0.03

3-grid 5 9 3 4 .013 4 .013 4 0.03
4-grid 8 16 4 5 .041 5 .087 5 0.13
5-grid 13 25 5 6 .25 6 .134 6 0.22
6-grid 18 36 6 7 .21 7 .368 7 0.38
7-grid 25 49 7 8 .528 8 .398 8 0.9
8-grid 32 64 8 9 .87 9 .669 9 1.38
9-grid 41 81 9 10 1.68 11 1.88 10 3.25

10-grid 50 100 10 11 3.13 13 2.09 11 6.01
15-grid 113 225 15 16 30.1 20 14.3 16 119.14
20-grid 200 400 20 24 261 24 63.1 22 933.43
25-grid 313 625 25 29 1200 30 231 28 4215.32
30-grid 450 900 30 31 8808 32 624 34 15930

From these results, one can garner that approximating Galois sine with real sine is just as
effective and maybe even more so in some cases. In addition, the mat-flow method appears to
be the clear winner in terms of optimality gap (most with a gap of one) for the binary matroids
in Tables 1 and 2. For Table 1, both the mat-flow and the max-flow method had 8 instances

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 20

where the heuristics provided the lowest width out of the three methods, however, the max-
flow method achieved optimality 5 times compared to 4 for the mat-flow method and 2 for the
classification method. For Table 2, there was only one instance the mat-flow method didn’t
provide one of the lowest widths. In terms of speed, the slight favorite is the max-flow method
with a close second from the classification method. Unfortunately, the mat-flow method is the
slowest method. The slowness of the mat-flow can be contributed to the complexity of solving
a number of matroid intersection problems as opposed a number of max-flow calculations. For
instance, the algorithm for the matroid intersection problems has to compute a different auxiliary
graph for every augmentation conducted in the algorithm. Even the clever techniques discussed
by Cunningham [28], since the matroids are linear, were not enough to reduce the speed of the
method to be comparable to the other two methods.

It has been shown that if a graph has a cycle with length at least 2, then the branchwidth of
the linear matroid associated with the binary node-edge incidence matrix of the graph has the
same branchwidth as the branchwidth of the graph itself [11]. This observation provides another
feasible way to check the performance of the heuristics because there are a number of graph
instances with branchwidth known in previous literature [8, 31]. These node-edge incidence
matrices can be treated as binary matroid instances to test the performance of our heuristics for
graphs.

In Table 3, the binary matroid instances are all node-edge incidence matrices of planar graphs.
Thus, the number of columns are about three times the number of rows for the instances (because
a planar graph with n nodes can have at most 3n − 6 edges). In Tables 4, 5, and 6, the binary
matroid instances are of compiler graphs. The number of columns are about the same as the
number of rows for these instances. The known branchwidth of the compiler instances are small,
ranging from 2 to 4.

For the instances in Table 3, the max-flow method seems to be the clear winner in terms of
width. For 21 of the instances, the max-flow method achieved one of the lowest widths amongst
the three methods followed by the classification method with 18 instances. Unfortunately, for
these instances, the mat-flow method did not perform well. We believe the delta (1

3) was too big
for these type of larger instances. On the other hand, for the instances in Tables 4, 5, and 6, the
mat-flow method is the clear winner with a total of 95 instances where the method one of the
lowest width or was one away from optimality. The max-flow method came in a close second on
performance for these instance with a total of 84 instances where the method either achieved one
of the lowest width or was one away from optimality.

These results indicate that all of the heuristics are near-optimal yet there is certainly room
to improve the practical performance of the heuristics for the graph instances. This behavior for
graphs (especially Table 3) can be attributed to the abstractness of the algorithms; the heuris-
tics do not use any information of the graphs’ structure in determining splits. Hence, we would
recommend the heuristics of Hicks [8] when dealing with graphs. In contrast, these methods

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 21

Table 3: Results of the methods for planar graph node-edge incidence matrix instances
classification method max-flow method mat-flow method

Names rows columns β width time(s) width time(s) width time(s)
eil51 51 150 8 8 4 8 2 9 27
eil76 76 215 10 12 21 12 12 12 100
eil101 101 290 10 12 50 14 37 13 263

bier127 127 567 14 19 88 20 63 16 184
ch130 130 377 10 11 99 14 84 12 786
ch150 150 432 12 15 177 14 99 14 533
d493 493 1467 20 27 8887 24 1871 29 48093

gil262 262 773 15 20 1157 23 328 18 4027
d198 198 571 12 19 454 14 142 17 1588
fl417 417 1179 9 18 7092 18 2479 27 91502

kroA100 100 285 9 13 52 10 24 13 138
kroA150 150 432 11 14 146 14 81 20 703
kroA200 200 586 11 17 414 14 205 22 2593
kroB100 100 284 9 12 37 15 34 14 238
kroB150 150 436 10 15 153 13 86 14 1132
kroB200 200 580 12 17 447 18 207 18 1492
kroC100 100 286 9 13 41 12 26 13 186
kroE100 100 283 8 11 44 14 25 11 348
lin105 105 292 9 13 39 12 24 13 332
a280 280 788 13 17 1099 13 268 20 4100
pr107 107 283 6 11 40 11 22 12 144
pr124 124 318 8 9 191 12 2 11 476
pr136 136 377 10 14 83 11 66 16 255
pr144 144 393 9 15 99 10 51 11 520
pr152 152 428 8 13 105 15 42 16 703
pr226 226 586 7 12 339 11 130 16 3654
pr264 264 772 13 17 802 19 305 17 2936
pr299 299 864 11 18 2351 13 399 16 5111
pr76 76 218 9 14 17 14 2 12 58

rat195 195 562 12 15 241 15 2195 15 1690
rat99 99 279 9 12 29 12 25 14 125
rat575 575 1609 17 25 15115 26 3894 30 64009
rat783 783 2322 20 32 43368 29 6813 33 205132
rd100 100 286 11 13 36 15 33 13 330
rd400 400 1183 17 26 4950 23 1136 21 12416
tsp225 225 622 12 17 509 16 292 19 2638
u159 159 431 10 17 161 19 93 19 300

seem effective in finding near-optimal branch decompositions when dealing with the binary ma-
troids associated with the matroids in Table 2 which we believe are not graphic. In addition, the
max-flow method seems to be faster than the other methods.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 22

Table 4: Results of the methods for compiler graph node-edge incidence matrix instances
classification method max-flow method mat-flow method

Graphs rows columns β width time(s) width time(s) width time(s)
aclear 9 10 2 3 0.05 3 0.03 2 0.25

advbnd 196 242 NP 5 22.42 5 9.99 7 215.17
arret 12 15 2 3 0.05 3 0.05 3 0.28

bcndb 25 34 2 3 0.03 4 0.17 3 1.69
bcndl 25 34 2 4 0.14 4 0.14 3 1.68
bcndr 25 34 2 4 0.13 4 0.15 3 1.67
bcndt 25 34 2 4 0.13 4 0.15 3 1.64
bilan 37 49 3 4 0.39 4 0.28 3 3.01
bilsla 18 22 2 3 0.05 3 0.07 3 0.31
buts 66 82 3 4 1.12 4 1.01 4 6.85

cardeb 48 64 3 6 0.53 4 0.58 5 6.23
coeray 11 14 2 3 0.03 3 0.03 3 0.18
colbur 40 54 NP 5 0.42 5 0.43 4 3.1
cosqb1 63 74 2 3 0.75 4 0.57 3 7.72
cosqb 8 10 2 3 0.01 3 0.04 3 0.09
cosqf1 63 74 2 3 0.1 4 0.4 3 7.76
cosqf 8 10 2 3 0.01 4 0.57 3 0.09
cosqi 21 24 2 4 0.06 3 0.09 2 0.33

dcoera 11 14 2 3 0.03 3 0.06 3 0.18
debflu 108 141 3 4 3.33 4 2.38 4 80.83
debico 60 76 3 5 0.93 4 0.80 5 6.7

decomp 117 150 NP 5 6.06 4 2.93 5 64.7
denitl 15 18 2 3 0.03 3 0.06 4 0.13
denitr 15 18 2 3 0.03 3 0.05 4 0.13
denpt 80 102 2 4 1.97 4 1.36 4 20.64
dens 6 7 2 3 0.02 2 0.03 3 0.06
densx 6 7 2 3 0.01 2 0.02 3 0.05
drepvi 71 96 3 5 1.66 4 1.12 5 14.41
drigl 21 29 3 5 0.10 4 0.19 4 0.64
dyeh 27 35 3 3 0.17 3 0.19 3 1.5
ecrd 21 24 2 4 0.06 3 0.09 2 0.35
ecwr 21 24 2 4 0.06 3 0.09 2 0.35
efill 102 136 3 5 4.56 4 3.65 3 44.74

energy 74 89 2 4 1.18 4 0.89 3 10.46
error 30 36 2 3 0.14 3 0.16 3 0.97
exact 6 6 2 2 0.02 2 0.02 2 0.02
fehl 39 45 2 3 0.23 4 0.23 2 1.72
fftb 60 73 2 3 0.80 4 0.64 3 7.98

In Step 3 of the k-classification subroutine, we use the eigenvectors corresponding to the
generalized eigenvalue problem, which is commonly used in Eigenmaps classification. Hence,

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 23

Table 5: More compiler instances results
classification method max-flow method mat-flow method

Graphs rows columns β width time(s) width time(s) width time(s)
fftf 57 59 2 3 0.67 4 0.58 3 7.09

fmtset 28 55 3 4 0.0 3 0.14 4 1.17
gamgen 20 25 3 4 0.07 3 0.11 3 0.6

genb 18 24 2 4 0.07 3 0.11 3 0.9
genprb 6 7 2 3 0.01 2 0.01 3 0.05
hmoy 6 7 2 3 0.02 2 0.01 3 0.05
ibin 6 7 2 3 0.01 2 0.03 3 0.05
ihbtr 56 75 3 4 0.87 4 0.58 3 9.52

inideb 35 45 3 4 0.25 3 0.27 3 2.26
iniset 465 465 2 2 200.02 2 52.15 2 1858.18
inithx 118 151 3 4 5.81 4 3.33 5 58.72
injbat 51 69 2 3 0.74 4 0.65 4 6.44
injchk 33 44 2 4 0.27 3 0.23 3 2.89
integr 55 70 NP 5 0.71 4 0.53 4 7.18
inter 16 21 2 4 0.05 3 0.09 3 0.37
jacld 25 32 2 4 0.11 3 0.14 4 0.71
jacu 25 32 2 4 0.10 3 0.14 4 0.74

lasden 66 85 NP 5 1.14 4 1.21 5 7.72
laser 19 25 2 4 0.07 4 0.07 3 1.01

laspow 14 18 3 3 0.06 3 0.09 3 0.45
lclear 9 10 2 3 0.02 3 0.02 2 0.07
linj 27 35 NP 4 0.14 4 0.20 4 1.87

lissag 20 22 2 3 0.08 4 0.09 4 0.12
main 34 44 2 3 0.25 3 0.20 3 2.23
nprio 17 22 3 3 0.05 4 0.08 4 0.41
numb 27 32 2 4 0.10 3 0.14 3 0.77
orgpar 56 72 2 4 0.80 4 0.62 3 8.21
paroi 102 134 3 5 4.27 5 2.45 4 63.47
pintgr 90 114 3 4 2.46 4 1.60 4 30.86
prophy 48 65 2 4 0.63 4 0.63 4 6.56

putb 138 175 NP 5 8.45 5 4.34 4 99.41
putdt 53 65 2 4 0.60 4 0.49 3 7.33
radb2 130 158 NP 6 5.76 6 3.45 6 53.08
radb3 113 138 NP 6 3.98 5 2.63 5 42.57
radb4 130 158 NP 6 5.76 6 3.44 6 53.08
radb5 113 138 NP 6 3.97 5 2.63 5 42.48
radf2 130 158 NP 6 5.76 6 3.45 6 53.03

one interesting question arising would be what if the standard eigenvectors are used in the clas-
sification method (i.e., solving L f = λ f in Step 3 of k-classification subroutine, where L is the
graph Laplacian). We investigate this by using the completely same procedure and parameters

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 24

Table 6: More compiler instances results
classification method max-flow method mat-flow method

Graphs rows columns β width gap time(s) width gap time(s)
radf3 113 138 NP 6 3.97 5 2.63 5 42.57
radf4 130 158 NP 6 5.77 6 3.44 6 53.1
radf5 113 138 NP 6 3.97 5 2.64 5 42.57
recre 27 35 NP 4 0.15 4 0.26 4 2.48
rfftb 6 7 2 3 0.02 2 0.01 3 0.05
rfftf1 55 71 2 3 0.79 4 0.71 4 7.41
rfftf 6 7 2 3 0.01 2 0.02 3 0.06
rffti 6 7 2 3 0.02 2 0.01 3 0.06
rhs 202 249 3 5 24.73 5 11.35 4 293.36
rinj 27 35 NP 4 0.15 4 0.22 4 1.83

saturr 17 23 2 4 0.08 3 0.07 3 0.41
saxpy 11 13 2 4 0.03 3 0.02 2 0.12
setb 33 40 2 3 0.20 3 0.22 3 1.53
setbv 39 48 2 4 0.29 4 0.29 3 1.63
setinj 18 23 2 4 0.29 3 0.10 3 0.74
setiv 28 36 2 4 0.15 3 0.16 4 0.82
seval 24 31 NP 4 0.12 3 0.16 4 1.07

si 23 31 3 4 0.14 4 0.15 4 0.68
sinqb 41 48 2 3 0.29 3 0.31 3 1.86
sinqf 41 48 2 3 0.29 3 0.31 3 1.88
solve 29 36 2 4 0.15 4 0.19 3 0.99
sortie 44 62 NP 6 0.55 6 0.41 4 4.59
spline 37 45 3 4 0.25 4 0.26 4 1.7
ssor 81 106 3 5 0.16 6 0.70 3 18.25

sudtbl 11 14 3 4 0.03 3 0.05 3 0.32
supp 12 15 2 3 0.03 2 0.05 3 0.21

tcomp 38 50 NP 6 0.32 5 0.34 4 5.17
tpart 14 18 2 4 0.04 3 0.06 3 .45
trans 73 95 4 5 1.49 5 1.06 4 14.89
urand 18 22 2 3 0.05 3 0.07 3 0.32
vavg 6 7 2 3 0.01 2 0.01 3 .06
verify 55 73 2 4 0.78 3 0.60 3 6.04
vgjyeh 6 7 2 3 0.01 2 0.01 3 0.07
vnewl 9 10 2 3 0.03 3 0.02 3 0.06

x21y21 6 6 2 2 0.00 2 0.02 2 0.02
yeh 50 68 3 6 0.67 5 0.64 5 6.7

zeroin 43 56 NP 4 0.46 5 0.62 4 3.86

as the classification method for the linear matroid instances, except that we directly compute the
standard eigenvectors of the Laplacian in Step 3 of the k-classification subroutine. We discover
that this difference seems not to affect the output of the classification method much for the test

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 25

instances.
Figure 5 reports the error versus the size of the element set for each planar instance (the upper

image) and planar instances (the lower image). The squares in the figures are the results using the
generalized eigenvectors, and the circles are the results using the standard eigenvectors. For most
of the instances, the two cases produce the same results. There is only a very slight tendency that
the generalized eigenvectors beats the standard eigenvectors when the size of the element set
is getting larger. The mean relative error of the standard eigenvectors for planar instances is
0.40 (compared with 0.43 for the case of generalized eigenvectors) and that for the compiler
instances is 0.59 (compared with 0.60 for the case of generalized eigenvectors). In summary,
using standard eigenvectors for Step 3 of the k-classification subroutine is also suggested for the
classification method.

10. Conclusions and Future Work

This paper presents the first near-optimal branch decomposition heuristics for linear matroids:
the classification method, the max-flow method, and the mat-flow method. In the literature,
there are already excellent heuristics for graphs, however, no practical branch decomposition
methods for general linear matroids had been addressed. Reforming the linear matroid into a
similarity graph, the first two heuristics are able to draw its connections to the classic graph
theory as well as the spectral graph theory. The third method uses graph theory to find adequate
subsets for separations but is more firmly grounded in matroid theory (with the side effect of
a loss in term of speed). Thus, the heuristics are sufficiently supported in theory. Also, these
methods can also be utilized to approximate the rankwidth of bipartite graphs. In addition, this
work extends a result of Cook and Seymour [7] for any symmetric submodular function and
the result and its corresponding corollary should prove useful for future work in the area (like
implementing the Cunningham-Geelen algorithm). In addition, the heuristics seem effective for
finding near optimal branch decompositions for small binary matroids and binary matroids whose
fundamental graphs are grid graphs. Furthermore, the computational results for the heuristics
are respectable for small graphs (up to 400 edges) or graphs with small branchwidth (up to 6).
Incorporating these techniques for any symmetric submodular set function is a definite direction
for future work.

Acknowledgments

The authors would like to thank the beneficial remarks of the anonymous referees who helped
improve the presentation of results, especially the referee who provided a more succinct proof
of proving the existence of the vertex s in the proof of Claim 1. The authors were partially
supported by National Science Foundation (DMS-0729251 and CMMI-0926618). Also, this
work was conducted while Ma was a masters student in the Computational Applied Mathematics
Department at Rice and Margulies was a post-doctoral researcher in the same department at Rice
under the VIGRE Program (NSF DMS-0739420 and EMSW21-VIGRE).

References

[1] N. Robertson, P. D. Seymour, Graph minors X: Obstructions to tree-decomposition, J. Combin. Theory, Ser. B 52
(1991) 153–190.

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 26

Figure 5: Generalized eigenvector and eigenvector

J. Ma et al. / Discrete Optimization 00 (2011) 1–27 27

[2] M. W. Bern, E. L. Lawler, A. L. Wong, Linear time computation of optimal subgraphs of decomposable graphs, J.
Algorithms 8 (1987) 216–235.

[3] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Inform. and Comput.
85 (1990) 12–75.

[4] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (1991) 308–
340.

[5] R. B. Borie, R. G. Parker, C. A. Tovey, Automatic generation of linear-time algorithms from predicate calculus
descriptions of problems on recursively constructed graph families, Algorithmica 7 (1992) 555–581.

[6] P. Seymour, R. Thomas, Call routing and the ratcatcher, Combinatorica 4 (1994) 217–241.
[7] W. Cook, P. D. Seymour, Tour merging via branch decomposition, INFORMS J. Comput. 15 (3) (2003) 233–248.
[8] I. V. Hicks, Branchwidth heuristics, Congressus Numerantium 159 (3) (2002) 31–50.
[9] S. Oum, P. D. Seymour, Approximating clique-width and branch-width, J. Combin. Theory, Ser. B 96 (2006)

514–528.
[10] W. Cunningham, J. Geelen, On integer programming and the branch-width of the constraint matrix, in: Proc. of the

13th Internat. IPCO Conference, Ithaca, NY, USA. June 25-27, 2007, LNCS 4513, 2007, pp. 158–166.
[11] I. V. Hicks, N. B. McMurray, The branchwidth of graphs and their cycle matroids, J. Combin. Theory, Ser. B 97

(2007) 681–692.
[12] F. Mazoit, S. Thomassé, Branchwidth of graphic matroids, in: Surveys in Combinatorics 2007, Cambridge Univer-

sity Press, 2007, pp. 275–286.
[13] S. Oum, Graphs of bounded rank-width, Ph.D. thesis, Princeton University (2005).
[14] S. Oum, Rank-width and vertex-minors, J. Combin. Theory, Ser. B 95 (2005) 79–100.
[15] M. Belkin, P. Niyogi, Using manifold structure for partially labelled classification, in: Adv. in Neural Inform.

Processing Systems 15, MIT Press, 2003, pp. 953–960.
[16] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput.

15 (6) (2003) 1373–1396.
[17] A. Szlam, M. Maggioni, R. Coifman, Regularization on graphs with function-adapted diffusion processes, J. Ma-

chine Learning Res. 9 (2008) 1711–1739.
[18] N. Alon, Eigenvalues and expanders, Combinatorica 6 (2) (1986) 83–96.
[19] F. Chung, Spectral Graph Theory, AMS, Providence, RI, 1997.
[20] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. on Pattern Anal. and Machine Intelligence

22 (8) (2000) 888–905.
[21] H. Bodlaender, A. Koster, Treewidth computations I. upper bounds, Information and Computation 208 (2010)

259–275.
[22] W. T. Tutte, Menger’s theorem for matroids, J. Research Natl. Bur. of Stds. Sec. B. Math. and Math. Phys. 69

(1965) 49–53.
[23] R. Diestel, Graph Theory, Springer-Verlag, New York, 2006.
[24] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[25] J. S. Dharmatilake, A min-max theorem using matroid separations, Contemporary Mathematics 197 (1996) 333–

342.
[26] J. Geelen, A. M. H. Gerards, N. Robertson, G. P. Whittle, On the excluded minors for the matroids of branch-width

k, J. Combin. Theory, Ser. B 88 (2) (2003) 261–265.
[27] D. Dummit, R. Foote, Abstract Algebra, Wiley, 2003.
[28] W. Cunningham, Improved bounds for matroid partition and intersection algorithms, SIAM J. Comp. 15 (4) (1986)

948–957.
[29] P. Hlinený, On the excluded minors for the matroids of branch-width three, Elec. J. of Comb. 9 (1).
[30] V. Jelinek, The rank-width of a square grid, Discrete Applied Mathematics 158 (7) (2010) 841–850.
[31] I. V. Hicks, Planar branch decompsoitons I: The ratcatcher, INFORMS J. Comput. 17 (4) (2005) 402–412.

