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Abstract

Systems of polynomial equations are commonly used to model combinatorial problems such
as independent set, graph coloring, Hamiltonian path, etc.. We formulate the dominating set
problem as a system of polynomial equations in two different ways: first, as a single, high-
degree polynomial, and second as a collection of polynomials based on the complements of
domination-critical graphs. We then provide a sufficient criterion for demonstrating that a
particular ideal representation is already the universal Gröbner bases of the ideal, and show
that the second representation of the dominating set ideal in terms of domination-critical graphs
is the universal Gröbner basis for that ideal. We then present the first algebraic formulation
of Vizing’s conjecture, and discuss the theoretical and computational ramifications to Vizing’s
conjecture of using either of the two dominating set representations described above.

1 Introduction

The combination of non-linear models and techniques from computer algebra is gaining acceptance
as a tool for exposing combinatorial properties of graph-theoretic problems. For example, prior
work on polynomial encodings includes colorings [3, 18, 10, 15, 22, 24, 25, 27, 20], stable sets
[18, 17, 22, 28, 21], matchings [11], and flows [3, 27, 26]. These non-linear encodings have been
used to prove combinatorial results ([2, 21, 19] and references therein), and also for computation
[20], but techniques from computer algebra are certainly not widely used by combinatorists and
graph theorists, and thus have not yet been deeply explored. In this paper, we move beyond
simply formulating a graph-theoretic problem as a system of polynomial equations, and instead
formulate an entire graph-theoretic conjecture using systems of polynomial equations and algebraic
techniques. Although the method we introduce here can probably be applied to other open questions
involving inequalities, we focus on the dominating set problem and an algebraic approach to a
famous open question from domination theory: Vizing’s conjecture.

Given a graph G, a set D ⊆ V (G) is a dominating set if for all v /∈ D, there is a u ∈ D such
that v is adjacent to u. The domination number of G, denoted by γ(G), is the size of a minimum
dominating set in G. The decision problem of determining whether a given graph has a dominating
set of size k is NP-complete [12]. Given graphs G and H, the Cartesian product graph G2H has
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vertex set V (G)× V (H), and edge set

E(G2H) =
{
(gh, g′h′) : g = g′ and (h, h′) ∈ E(H), or h = h′ and (g, g′) ∈ E(G)

}
,

where g, g′ ∈ V (G) and h, h′ ∈ V (H). In 1968, V. Vizing conjectured a beautiful relationship
between domination numbers and Cartesian product graphs:

Conjecture 1.1 (Vizing [31], 1968) Given graphs G and H, γ(G)γ(H) ≤ γ(G2H).

Vizing’s conjecture is an active area of research spanning over forty years. Early results have
focused on proving the conjecture holds for a certain classes of graphs. For example, in 1979,
Barcalkin and German [5] proved that Vizing’s conjecture holds for graphs satisfying a certain
“partitioning condition” on the vertex set. The idea of a “partitioning condition” inspired work for
the next several decades, as Vizing’s conjecture was shown to hold on paths, trees, cycles, chordal
graphs, graphs satisfying certain coloring properties, and graphs with γ(G) ≤ 2. These results
are clearly outlined in the 1998 survey paper by Hartnell and Rall [14]. In 2000, Clark and Suen
[7] showed that γ(G)γ(H) ≤ 2γ(G2H), and in 2004, L. Sun [30] showed that Vizing’s conjecture
holds on graphs with γ(G) ≤ 3. Finally, in 2009, Hartnell and Rall, et al. [6] contributed another
thorough survey paper summarizing the work from 1968 to 2008, which contains new results, new
proofs of existing results, and comments about minimal counter-examples.

We begin by reviewing basic ideas from algebraic geometry: unions of varieties, intersections
of ideals, notions of radical ideals, and universal Gröbner bases (Sections 2 and 3). In Section
3, for certain ideals, we develop a criterion for identifying a particular basis of the ideal as the
universal Gröbner basis. In Section 4.1, we represent both the problem of finding graphs G with
dominating sets of size k, and the problem of finding graphs G and H with dominating sets of
size k, l respectively such that the Cartesian product graph G2H has a dominating set of size r,
as systems of polynomial equations. In Section 4.2, we develop the idea of k-domination-covers,
or k-covers, which are the complements of k-dominating graphs. We identify specific properties of
k-covers, which thus translates to new results pertaining to domination-critical graphs, and briefly
discuss known results in the active field of domination-critical graphs.

In Section 4.3, we unify the disparate results that have appeared thus far in our paper: we prove
that the same ideals described in Section 4.1 can be represented by a set of polynomials based on
k-covers, that is, by a set of polynomials based on the complements of domination-critical graphs.
By the results in Section 3, we prove that this representation is the universal Gröbner basis of the
ideal.

Our paper culminates in Section 5 with an algebraic representation of Vizing’s conjecture. This
representation is built upon the union of certain varieties and the intersection of certain ideals. We
initially present the algebraic version of Vizing’s conjecture without respect to a particular repre-
sentation. We then discuss the consequences of using either of the two representations presented in
Sections 4.1 and 4.3. We include comments about computational results and future computational
directions, as well as approaches from a purely graph theory perspective. We conclude by clarifying
the relationship between universal Gröbner bases and Vizing’s conjecture via k-covers, and reclaim
a known result where Vizing’s conjecture holds.

2 Algebraic Definitions and Background

In this section, we outline the basic definitions and results concerning ideals and varieties that are
utilized throughout the paper, and that are particularly necessary for the algebraic approach to
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Vizing’s conjecture described in Section 5. The results presented in this section are well-known
in the field of algebraic geometry and are presented in detail in [8], Chapters 2 and 4. The only
new contribution is Lemma 2.2, which is a small application of well-known results. The ideals
referenced throughout are always ideals in polynomial rings, i.e. I ⊆ K[x1, . . . , xn], where K is an
algebraically-closed field. In our case, K = C.

Given a system of polynomial equations, f1 = f2 = · · · = fs = 0, the ideal associated with
the system is I = 〈f1, . . . , fs〉, and the variety associated I (i.e. V (I)) is the set of common zeros
of {f1, . . . , fs}. In other words, V (I) = {x ∈ Cn : f1(x) = · · · = fs(x) = 0}. An ideal is zero-
dimensional if V (I) is finite. Throughout the paper, we will often write a polynomial f ∈ I as∑

(·)fi. In this case, (·) represents the coefficients of the generators fi, but because we do not refer
to the coefficients explicitly, we do not need to give them individual and precise labels such as ai.

Given two ideals, I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉, the product ideal I · J is the ideal
generated by all polynomials f ·g with f ∈ I and g ∈ J . It can be shown ([8], pg 183, Prop. 6) that
I · J (often denoted by IJ) is the ideal generated by 〈figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t〉. We summarize
the results concerning the varieties of I and J as follows:

V (I) ∪ V (J) = V (〈figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t〉) = V (I · J) = V (I ∩ J) .

An ideal I is radical if fm ∈ I, for some integer m ≥ 1, implies that f ∈ I. Given an ideal I, the
radical of I, denoted

√
I, is the set {f : fm ∈ I for some integer m ≥ 1}. It is easy to see that an

ideal I is radical if and only if I =
√

I. We recall the following fact concerning product ideals and
radical ideals (left as an exercise in [8]): Given radical ideals I, J ∈ K[x1, . . . , xn],

√
IJ = I ∩ J .

We note that in one particular case, it is trivial to determine whether or not an ideal is radical.

Lemma 2.1 ([16], Section 3.7.B, pg. 246) Given a zero-dimensional ideal I, if I contains a
univariate square-free polynomial in each variable, then I is radical.

In this case, square-free implies that when a polynomial is decomposed into its unique factorization,
there are no repeated factors. For example, (x2 + y)(x4 + 2z + 3) is square-free, but (x2 + y)(x4 +
2z +3)3 is not. In particular, Lemma 2.1 implies that ideals containing x2

i −xi = xi(xi− 1) in each
variable (i.e., the boolean ideals) are radical. In Section 4, we will see that all ideals associated
with dominating sets (and therefore Vizing’s conjecture) are radical for this reason.

In general, it may be quite difficult to determine a basis for
√

IJ . However, if I and J are
radical ideals via Lemma 2.1, and additionally, if the univariate, square-free polynomials in each
variable contained in I, J are identical, we can explicitly determine a basis for

√
IJ .

Lemma 2.2 Let I and J be ideals such that I = 〈f1, . . . fs〉 and J = 〈g1, . . . , gt〉. Furthermore, for
1 ≤ i ≤ n, let fi = gi be square-free univariate polynomials in xi. Then

√
IJ = 〈figj : 1 ≤ i ≤

s, 1 ≤ j ≤ t〉+ 〈fi : 1 ≤ i ≤ n〉 .

Proof: We prove the inclusion in both directions. For convenience, let M := 〈figj : 1 ≤ i ≤ s, 1 ≤
j ≤ t〉 + 〈fi : 1 ≤ i ≤ n〉. First, we show that

√
IJ ⊆ M . Let h ∈ √IJ . Then, there exists an

integer m ≥ 1 such that hm ∈ IJ . Thus, hm =
∑

(·)fg. Thus, hm ∈ M . But, by Lemma 2.1,
the ideal M is radical since M contains a square-free univariate polynomial fi in each variable xi.
Thus, hm ∈ M implies that h ∈ M .

Conversely, to show that M ⊆ √
IJ , let h ∈ M . Then, h =

∑
(·)fg +

∑
(·)f . Consider

h2 =
(∑

(·)fg +
∑

(·)f
)(∑

(·)fg +
∑

(·)f
)

.
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Any term in the expanded h2 can be viewed as (·)figjfkgl = (·)figj , or (·)figjfk = (·)figj , or
(·)fifj = (·)figj , etc. Thus, any term in the expanded h2 can be written as (·)fg, with any extra
multiplicities in f or g simply folded into the coefficient. Therefore,

h2 =
∑

(·)fg ,

and there exists an integer m = 2 ≥ 1 such that hm ∈ IJ , which implies that h ∈ √IJ . 2

This brings us to the following critical fact: if I and J are boolean, radical ideals, then by
Lemma 2.2,

√
IJ = 〈figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t〉+ 〈xi(xi − 1) : 1 ≤ i ≤ n〉 = I ∩ J .

In Section 4, when we represent the dominating set problem as a system of polynomial equations,
the representations will be boolean, radical ideals as described above. Thus, the basis of their
product ideals can be described via Lemma 2.2. This fact will be vital in Section 5 when we
present an algebraic representation of Vizing’s conjecture.

3 Universal Gröbner Bases and Products of Linear Factors

In this section, we provide a brief overview of the terminology (from [8], Chap. 2) pertaining to
Gröbner bases, and build off the ideas of De Loera in [18] to show that a specific set of linear
factor polynomials is a universal Gröbner basis. These “linear factor” ideals allow us to provide a
combinatorial interpretation of the universal Gröbner basis of the dominating set ideal defined in
Section 4, and will be further used in our algebraic exploration of Vizing’s conjecture.

A monomial order ≺ for the monomials in the polynomial ring K[x1, . . . , xn] is a well-ordering
which is multiplicative, and for which the constant polynomial is the smallest. The leading term
lt(f) of a polynomial f ∈ K[x1, . . . , xn] is the largest monomial in f (and its corresponding
coefficient) with respect to the monomial order ≺. Given an ideal I, a finite subset G = {g1, . . . , gr}
of I is a Gröbner basis of I (with respect to ≺) if

〈lt≺(g1), . . . , lt≺(gr)〉 = 〈lt≺(I)〉 = 〈lt≺(f) : f ∈ I〉 .

A finite subset G of I is a universal Gröbner basis of I if it is Gröbner basis of I with respect to
any monomial order. Given an ideal I, the universal Gröbner basis of I is unique.

There is a specific criterion, sometimes referred to as Buchberger’s S-pair criterion, for deter-
mining if a given subset of polynomials is a Gröbner basis of I. Before we state Buchberger’s S-pair
criterion, we fix a monomial order ≺ and recall the following notation:

• f
F denotes the remainder of division of the polynomial f by the ordered s-tuple F = (f1, . . . , fs).

• xγ is the least common multiple of the leading monomial lm(f) and the leading monomial
lm(g), written as xγ = lcm

(
lm(f), lm(g)

)
.

• The S-pair of f and g is the combination:

S(f, g) =
xγ

lt(f)
· f − xγ

lt(g)
· g .

We will now characterize Gröbner bases in terms of S-pairs.
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Theorem 3.1 ([8], Chap. 2, Sec. 6) Given an ideal I, a basis G = {g1, . . . , gr} of I is a Gröbner
basis for I, if and only if, for all pairs i 6= j, S(gi, gj)

G
= 0 .

We will now construct a set of polynomials, where each polynomial is a product of linear factors,
and show that when the set satisfies a special condition called the linear factor criterion, the set is
a universal Gröbner basis. Let S = {i1, i2, . . . , ik} ⊆ {1, . . . , n}, and let

P (S) := (xi1 − 1)(xi2 − 1) · · · (xik − 1) , and x(S) = xi1xi2 · · ·xik .

Definition 3.2 Let {S1, . . . , SD} be a set such that each Si ⊆ {1, . . . , n} and |Si| = di. We say
that the set {S1, . . . , SD} satisfies the linear factor criterion if, for any integers i, j, k, Sk is a not
a proper subset of Si \ Si ∩ Sj, and Sk is a not a proper subset of Sj \ Si ∩ Sj.

Theorem 3.3 Let {S1, . . . , SD} with Si ⊆ {1, . . . , n} be a set that satisfies the linear factor crite-
rion, and let gi = P (Si). Then {g1, . . . , gD} is a universal Gröbner basis of 〈g1, . . . , gD〉.

Before we prove this theorem, we present an example.

Example 3.4 Consider C[x1, . . . , x12], and let S1 = {1, 2, 3, 5, 6}, S2 = {1, 2, 3, 7, 8}, S3 = {9, 10, 11, 12},
S4 = {4, 8, 9}. Let G = {g1, g2, g3, g4} with gi = P (Si).

g1 := (x1 − 1)(x2 − 1)(x3 − 1)(x5 − 1)(x6 − 1) ,

g2 := (x1 − 1)(x2 − 1)(x3 − 1)(x7 − 1)(x8 − 1) ,

g3 := (x9 − 1)(x10 − 1)(x11 − 1)(x12 − 1) ,

g4 := (x4 − 1)(x8 − 1)(x9 − 1) .

Since S1∩S2 = {1, 2, 3}, S1 \ (S1∩S2) = {5, 6}, and S2 \ (S1∩S2) = {7, 8}. Neither S3 nor S4 is a
proper subset of S1 \ (S1 ∩ S2) or S2 \ (S1 ∩ S2). This is true for all i, j pairs, thus {S1, S2, S3, S4}
satisfies the linear factor criterion. Additionally, note that lt(gi) is always x(Si), regardless of the
specified monomial order. Thus, we see

S(g2, g4) =
x1x2x3x4x7x8x9

x1x2x3x7x8
g2 − x1x2x3x4x7x8x9

x4x8x9
g4 = x4x9g2 − x1x2x3x7g4

= (x4 + x9 − 1)g2 − (x1x2x3 + x1x2x7 + x1x3x7 + x2x3x7 − x1x2 − x1x3 − x1x7 − x2x3

− x2x7 − x3x7 + x1 + x2 + x3 + x7 − 1)g4 .

Regardless of the monomial order, the leading terms of the coefficients of g2 and g4 are not divisible
by the leading terms of g1, g2, g3 or g4, Thus, S(g2, g4)

G
= 0. Performing similar calculations for

all other pairs can quickly show that {g1, . . . , g4} is the universal Gröbner basis of 〈g1, . . . , g4〉 . 2

For simplicity of notation, let Si
only = Si \ (Si ∩ Sj) and Sj

only = Sj \ (Si ∩ Sj). Furthermore, let

Sij
⊆ be a subset of Si ∩ Sj , Si

⊆ only be a subset of Si
only, and Sj

⊆ only be a subset of Sj
only. Note that

|Sj
only|+ di = |Si

only|+ dj . (1)

Proof: We will show that the set of generators G = {g1, . . . , gD} satisfies Buchberger’s S-pair
criterion. Consider any two polynomials gi, gj . We must show S(gi, gj)

G
= 0. We claim

S(gi, gj) =
x(Si ∪ Sj)

x(Si)
gi − x(Si ∪ Sj)

x(Sj)
gj = x(Sj

only)gi − x(Si
only)gj (2)
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=
(
lt

(
P (Sj

only)
)− P (Sj

only)
)
gi −

(
lt

(
P (Si

only)
)− P (Si

only)
)
gj . (3)

Before we prove the equality between lines 2 and 3, we note that, if true, we have already shown
that S(gi, gj)

G
= 0. This can be seen by noting that, since {S1, . . . , SD} satisfies the linear factor

criterion, given integers i, j, k, Sk is not a proper subset of Si
only and Sk is not a proper subset of

Sj
only. Additionally, regardless of the monomial order, the leading term of gi is x(Si), and the leading

term of
(
lt

(
P (Sj

only)
)−P (Sj

only)
)

is a proper subset of Sj
only (similarly,

(
lt

(
P (Si

only)
)−P (Si

only)
)

is a proper subset of Si
only). Thus, lt(gk) does not divide either

(
lt

(
P (Sj

only)
) − P (Sj

only)
)

or(
lt

(
P (Si

only)
)− P (Si

only)
)
, and we can see that S(gi, gj)

G
= 0.

In order to prove the equality between lines 2 and 3, we must show that every monomial in line
2 either cancels within line 2, or appears in line 3 with the same coefficient, and vice versa.

Let x(M) be a monomial appearing in line 2. Either

M = Sj
only ∪ Sij

⊆ ∪ Si
⊆ only , or M = Si

only ∪ Sij
⊆ ∪ Sj

⊆ only .

We note that x(M) appears in both x(Sj
only)gi and x(Si

only)gj only when Si
⊆ only = Si

only and

Sj
⊆ only = Sj

only. In this case, the coefficient for x(M) is (−1)C − (−1)D where

C = di −
(∣∣Sij

⊆
∣∣ +

∣∣Si
only

∣∣) , and D = dj −
(∣∣Sij

⊆
∣∣ +

∣∣Sj
only

∣∣) .

This formula can be explained by noting that, in any polynomial that is the product of linear factors,
the coefficient for a given monomial is (−1)C where C is the degree of the polynomial minus the
degree of the given monomial. For example, consider f := (x1 − 1)(x2 − 1)(x3 − 1)(x7 − 1). The
coefficient for the monomial x1x2x3 is (−1)4−3 = −1, and the coefficient for x2x7 is (−1)4−2 = 1.

Using the identity given in Eq. 1, we note that di −
∣∣Si

only

∣∣ = dj −
∣∣Sj

only

∣∣. Thus, C = D, and
the monomial cancels.

We will now consider the case where M = Sj
only∪Sij

⊆ ∪Si
⊆ only and Si

⊆ only 6= Si
only. In this case,

x(M) appears in line 2 in the product x(Sj
only)gi, and the coefficient for x(M) is (−1)C where

C = di −
(∣∣Sij

⊆
∣∣ +

∣∣Si
⊆ only

∣∣) .

In line 3, x(M) appears only in the product −(
lt

(
P (Si

only)
)− P (Si

only)
)
gj , and the coefficient for

x(M) is (−1)C′ where

C ′ =
∣∣Si

only

∣∣− ∣∣Si
⊆ only

∣∣ + dj −
(∣∣Sij

⊆
∣∣ +

∣∣Sj
only

∣∣
)

+ 2 .

But using the identity from Eq. 1, and substituting for dj , we see

C ′ =
∣∣Si

only

∣∣− ∣∣Si
⊆ only

∣∣ +
(∣∣Sj

only

∣∣ + di −
∣∣Si

only

∣∣
)
−

(∣∣Sij
⊆

∣∣ +
∣∣Sj

only

∣∣
)

+ 2

= di −
∣∣Si
⊆ only

∣∣− ∣∣Sij
⊆

∣∣ + 2 .

Thus, C is the same parity as C ′, which implies that the coefficient for x(M) in line 2, and the
coefficient for x(M) in line 3 are the same.

The case where M = Si
only∪Sij

⊆ ∪Sj
⊆ only and Sj

⊆ only 6= Sj
only is the same. Thus, we have shown

that every monomial in line 2 either cancels, or appears in line 3 with the same coefficient.
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We must now show that every monomial in line 3 either cancels, or appears in line 2 with the
same coefficient. Let x(M) be a monomial appearing in line 3. Either

M = Sj
( only ∪ Sij

⊆ ∪ Si
⊆ only , or M = Si

( only ∪ Sij
⊆ ∪ Sj

⊆ only .

We note that in each case, M contains a proper subset of Sj
only or a proper subset of Si

only. Addi-

tionally, the two cases when Si
⊆ only = Si

only, or Sj
⊆ only = Sj

only have already been explicated above.
Thus, in both cases, we have already shown that x(M) appears in line 2 with the same coefficient.

We will now consider monomials of the form x(M) where M = Sj
( only∪Sij

⊆ ∪Si
( only, and show

that these monomials cancel within line 3. The coefficient for x(M) is (−1)C − (−1)D where

C =
∣∣Sj

only

∣∣− ∣∣Sj
( only

∣∣ + di −
(∣∣Sij

⊆
∣∣ +

∣∣Si
( only

∣∣
)

, and

D =
∣∣Si

only

∣∣− ∣∣Si
( only

∣∣ + dj −
(∣∣Sij

⊆
∣∣ +

∣∣Si
( only

∣∣
)

+ 2 .

As before, using the identify from Eq. 1 and substituting for dj , we see C is the same parity as D.
Thus, (−1)C − (−1)D = 0, and the monomial cancels.

Thus, we have shown that every monomial in line 2 either cancels within line 2, or appears in
line 3 with the same coefficient, and vice versa. Additionally, we have not utilized the properties
of any particular monomial order to do so. Thus, we have shown that {g1, . . . , gD} is a universal
Gröbner basis for 〈g1, . . . , gD〉 . 2

The following corollary extends the theorem above to include “boolean” polynomials of the form
x2

i − xi. This is particularly interesting because boolean polynomials are a common ingredient in
non-linear models of combinatorial problems.

Corollary 3.5 Let {S1, . . . , SD} with Si ⊆ {1, . . . , n} (and |Si| > 1) be a set that satisfies the
linear factor criterion. Let gi = P (Si), and let bi = x2

i − xi. Then G = {b1, . . . , bn} ∪ {g1, . . . , gD}
is the universal Gröbner basis for 〈b1, . . . , bn〉+ 〈g1, . . . , gD〉.

We observe that xi−1 and x2
i −xi are redundant equations, which explains the extra condition

|Si| > 1, ∀i.
Proof: By Theorem 3.3, we have already seen that {g1, . . . , gD} is a universal Gröbner ba-
sis. Therefore, in order to show that G satisfies Buchberger’s criterion, it remains to show that
S(bi, bj)

G
= S(bi, gj)

G
= 0, without relying on properties of a particular monomial order,.

Because monomial orders are by definition well-orders, lt(bi) is always x2
i , and lt(gi) is always

x(Si), regardless of the specific monomial order.

We will first show that S(bi, bj)
G

= 0 for i 6= j. Note that

S(bi, bj) =
x2

i x
2
j

x2
i

(x2
i − xi)−

x2
i x

2
j

x2
j

(x2
j − xj) = x2

i xj − xix
2
j = xj(x2

i − xi)− xi(x2
j − xj) .

Since |Si| > 1, the coefficients −xi and xj are not divisible by lt(gk), ∀k. Thus, S(bi, bj)
G

= 0.

We will now show that S(bi, gj)
G

= 0, for all i, j pairs.

• Case 1: Choose an i such that i /∈ Sj , and write gj := x(Sj) + Prest. Note

S(bi, gj) =
x2

i x(Sj)
x2

i

(x2
i − xi)− x2

i x(Sj)
x(Sj)

(x(Sj) + Prest) = −xix(Sj)− x2
i (Prest)
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= −xi(x(Sj) + Prest)− Prest(x2
i − xi) = −xigj − Prest(x2

i − xi) .

By the linear factor criterion, lt(Prest) is not divisible by lt(gk) for any k. Thus, S(bi, gj)
G

=
0.

• Case 2: Choose an i such that i ∈ Sj , and write gj := x(Sj)− x(Sj \ i) + Prest. Since i ∈ Sj ,
this implies that lcm

(
lt(bi), lt(gj)

)
= xix(Sj) = x2

i x(Sj \ i). Then

S(bi, gj) =
x2

i x(Sj \ i)
x2

i

(x2
i − xi)− xix(Sj)

x(Sj)
(
x(Sj)− x(Sj \ i) + Prest

)
= −xiPrest (4)

=
(
x(Sj \ i)− P (Sj \ i)

)
(x2

i − xi) , (5)

and S(bi, gj)
G

= 0 by the linear factor criterion. The equality of lines 4 and 5 can be seen
as follows. The polynomial x(Sj \ i) − P (Sj \ i) is the polynomial P (Sj \ i) with the signs
changed and the leading term removed. When multiplied by a positive x2

i and a negative xi,
every monomial that appears in that product also appears in the product −xi(Prest). To see
this clearly, we will consider a monomial x(M) where M is a proper subset of Sj (this is the
only kind of monomial appearing in Prest on line 4). There are two cases:

– Case 2a: i ∈ M . When x(M) is multiplied by −xi (line 4), the sign of the leading
coefficient changes, and the degree increases by one. In other words, xix(M) appears in
expanded product −xi(Prest) with leading coefficient (−1)·(−1)dj−|M |. However, x(M\i)
appears in P (Sj \ i) with the same parity sign as x(M) in Prest (i.e., (−1)(dj−1)−(|M |−1)).
Thus, the product −P (Sj \ i)(x2

i ) produces the same monomial with the same leading
coefficient as −xi(Prest) (line 5) and equality between lines 4 and 5 is preserved.

– Case 2b: i /∈ M . In this case, x(M) appears in P (Sj \ i), but with opposite sign as
x(M) in Prest. In particular, x(M) in Prest has coefficient (−1)dj−|M | as before, but x(M)
in P (Sj \ i) has coefficient (−1)(dj−1)−|M |. Thus, the product −P (Sj \ i)(−xi) produces
the same monomial with the same leading coefficient as −xi(Prest) and equality between
lines 4 and 5 is preserved

In cases 2a and 2b, we demonstrated that the monomials produced by −P (Sj \ i)(x2
i ) and

−P (Sj \ i)(−xi) respectively, appear in line 4. Thus, we have accounted for every monomial
in line 5, and we have shown that line 4 is equal to line 5.

We have shown that S(bi, bj)
G

= 0 for i 6= j, and that S(bi, gj)
G

= 0, for all i, j pairs, without
relying on any properties of a monomial order. Since we have already shown that {g1, . . . , gD}
is a universal Gröbner basis, this means that we have shown that {b1, . . . , bn} ∪ {g1, . . . , gD} is a
universal Gröbner basis of 〈b1, . . . , bn〉+ 〈g1, . . . , gD〉. This concludes our proof. 2

In Section 4.3, we will represent the dominating set problem as a system of polynomial equations
in such a way that the representation is already a universal basis. This representation follows the
work of De Loera [18], where the graph coloring problem is also represented in such a way that
it is a universal Gröbner basis. These kinds of representations may prove useful in the context
of combinatorial ideal membership questions, and also with the advance of algorithms specifically
tailored for finding universal Gröbner basis, such as [4].
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4 Dominating Sets, Ideals and Gröbner Bases

In this section, we begin by formulating the dominating set problem as a system of polynomial
equations. We extend this formulation to include a dominating set in a graph G, a dominating set
in a graph H, and a dominating set in the product graph G2H. We refer to this formulation (linking
graphs G, H, and G2H) in Section 5 during the algebraic formulation of Vizing’s conjecture. In
Section 4.2, we introduce the idea of a k-domination cover or a k-cover. We explain the relation
between k-covers and domination-critical graphs, and provide various examples of k-covers. We also
prove several properties of k-covers, and provide a conjecture for future work. We unify these ideas
in Section 4.3 by showing that k-covers provide the combinatorial interpretation of the universal
Gröbner basis of the ideals described in Section 4.1. Thus, the purpose of this section is to explore
two different non-linear models of the dominating set problem based on two different combinatorial
properties, and surprisingly, the second representation is the universal Gröbner basis of the first.

4.1 Dominating Sets, Product Graphs and Systems of Polynomial Equations

Let Sn
k represent the set of k-subsets of {1, 2, . . . , n}. Thus, |Sn

k | =
(
n
k

)
, and S ∈ Sn

k implies
that S ⊆ {1, 2, . . . , n} is a particular subset with |S| = k. In the following system of polynomial
equations, there is one variable for every possible edge in a graph with n vertices. Thus, the variable
eij refers to the edge between vertex i and vertex j. Since our graphs are undirected, we implicitly
assume the substitution eji = eij whenever j > i.

Theorem 4.1 There is a bijection between the set of solutions of the following system of polynomial
equations and the labeled graphs G in n vertices with a dominating set of size k.

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n ,

∏

S∈Sn
k

( ∑

i/∈S

( ∏

j∈S

(eij − 1)
))

= 0 . (6)

Example 4.2 Let n = 3 and k = 1. The variables in the system of polynomial equations defined
by Theorem 4.1 are e12, e13 and e23. Furthermore, S3

1 =
{{1}, {2}, {3}}.

For the second equation, we have:
(
(e21 − 1) + (e31 − 1)

)(
(e12 − 1) + (e32 − 1)

)(
(e13 − 1) + (e23 − 1)

)
= 0 .

However, as noted above, since the graph is undirected, we implicitly assume the substitution e21 =
e12, e31 = e13 and e32 = e23. Thus, the system of equations is as follows:

e2
12 − e12 = 0, e2

13 − e13 = 0, e2
23 − e23 = 0(

(e12 − 1) + (e13 − 1)
)(

(e12 − 1) + (e23 − 1)
)(

(e13 − 1) + (e23 − 1)
)

= 0 .

2

Proof: We refer to the system of polynomial equations defined by Theorem 4.1 as ? throughout
this proof. We will define a map φ between the solutions of ? and the labeled graphs G in n vertices
with a dominating set of size k, and show that φ is a bijection between the two sets.

To deal with the problem of graph isomorphisms, we consider a set of n vertices with a fixed
labeling 1 through n. Thus, two graphs G and G′ on this labeled set of n vertices are equal if
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and only if (i, j) ∈ E(G) implies that (i, j) ∈ E(G′). In other words, if G and G′ are isomorphic,
they are not necessarily equal under this definition. Then, our map φ simply takes a solution to ?,
and converts it to a graph G on the labeled set of n vertices by adding the edges (i, j) to E(G) if
and only if the variable eij = 1. Then, φ is one-to-one, since given any two solutions s and s′, if
G = φ(s) = φ(s′) = G′, then clearly s = s′.

We will now show that the image of φ is a subset of the set of labeled graphs G with a dominating
set of size k. The boolean equations e2

ij − eij = 0 force every variable eij to be zero or one; thus,
the boolean equations turn edges “on” or “off” when applying the map φ, and every solution
corresponds to a particular graph G. We must now show that since the solution satisfies Eq. 6, the
particular graph G formed from the solution has a dominating set of size k. Let A and B denote
different pieces of Eq. 6 as follows.

∏

S∈Sn
k

(∑

i/∈S

( ∏

j∈S

(eij − 1)
)

︸ ︷︷ ︸
A

)

︸ ︷︷ ︸
B

= 0 .

The equation is only satisfied if one of the inner summations B (corresponding to some set S) is
zero. The value of an individual summand A in B is either zero or ±1. However, two different
summands A,A′ in the summation B can never mutually cancel, since if they are both non-zero,
they are both −1|S|. Thus, they are either both −1 or both +1. Therefore, a summation B is only
zero if every individual summand A is also zero, and A is only zero if at least one edge variable has
value one. Therefore, every i /∈ S is adjacent to a j ∈ S. In other words, G has a dominating set
of size k.

Having shown that the image of φ is a subset of the set of labeled graphs G with a dominating
set of size k, we must now show that φ is onto, or that given any graph G with a dominating set
of size k, φ−1(G) is a solution to ?. The map φ−1(G) would be applied as follows: if the edge eij is
present in G, turn it “on” by setting the variable eij = 1. If the edge eij is not present in G, turn
the variable eij “off” by setting the variable eij = 0. Clearly, the boolean equations e2

ij − eij = 0
are satisfied. Since the graph G has a dominating set of size k, let S = {i1, . . . , ik} be such a
dominating set. Thus, every vertex i not in the dominating set S must be adjacent to a vertex
j that is in the dominating set S. In other words, an edge eij is “on” from i /∈ S to j ∈ S, and
the (eij − 1) term in the product corresponding to the dominating set S is equal to zero. Since
every vertex i /∈ S must satisfy this condition, this implies that every summand in the summation
(corresponding to the dominating set S)

∑

i/∈S

( ∏

j∈S

(eij − 1)
)

is equal to zero, and thus the entire summation is equal to zero. Since Eq. 6 is a product of
summations, the equation is satisfied.

Thus, φ is one-to-one and onto, and φ is a bijection between solutions of ? and the set of labeled
graphs G with a dominating set of size k. 2

We will now use the system of polynomial equations defined in Theorem 4.1 as a building block
to model dominating sets in G,H and G2H.

Theorem 4.3 There is a bijection between the set of solutions of the following system of polyno-
mial equations and the set of labeled graphs G,H in n, n′ vertices with dominating sets of size k, l
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respectively such that their Cartesian product graph G2H has a dominating set of size r.

Representing a graph G in n vertices with a dominating set of size k:

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n,

∏

S∈Sn
k

(∑

i/∈S

( ∏

j∈S

(eij − 1)
))

︸ ︷︷ ︸
P k

G

= 0 .

Representing the graph H in n′ vertices with a dominating set of size l:

e′2ij − e′ij = 0 , for 1 ≤ i < j ≤ n′,

∏

S∈Sn′
l

(∑

i/∈S

( ∏

j∈S

(e′ij − 1)
))

︸ ︷︷ ︸
P l

H

= 0 .

Representing the Cartesian product graph G2H with a dominating set of size r:

∏

S∈Snn′
r

( ∑

gh/∈S

( ∏

g′h∈S

(egg′ − 1)
∏

gh′∈S

(e′hh′ − 1)
))

︸ ︷︷ ︸
P r

G2H

= 0 .

Proof: It is clear from Theorem 4.1 that there is a bijection between the solutions of the equations
representing graphs G and H and the set of graphs in n, n′ vertices with dominating sets of size
k, l respectively. The equation representing G2H is of the same form, except that this equation
takes into account the unique structure of the product graph. For example, if a vertex not in S
is adjacent to a vertex in S, the adjacency is either due to an edge in G, or an edge in H. In
particular, gh /∈ S is either adjacent to a vertex g′h ∈ S if the edge (g, g′) is “on” in G, or gh /∈ S
is adjacent to a vertex gh′ ∈ S if the edge (h, h′) is “on” in H. Thus, the proof of the bijection
follows the logic of the proof of Theorem 4.1. 2

Since the system of polynomial equations described in Theorem 4.3 depends on the variables
n, k, n′, l and r, we define the ideal I(n, k, n′, l, r) as

I(n, k, n′, l, r) := 〈P k
G, P l

H , P r
G2H , e2 − e〉 ,

where e2 − e denotes the entire set of boolean edge equations

{e2
ij − eij : 1 ≤ i < j ≤ n, e′2ij − e′ij : 1 ≤ i < j ≤ n′, } .

We note that I(n, k, n′, l, r) is radical by Lemma 2.1, since the boolean equations e2−e are univariate
and square-free. We now define k-covers, which provide a combinatorial interpretation of the
universal Gröbner basis of I(n, k, n′, l, r) in Section 4.3. We note that what is important about
the next section is not the uniqueness or complexity of the definition of k-covers, but rather the
interesting relationship between the ideal I(n, k, n′, l, r), the combinatorial idea of a k-cover, and
the universal Gröbner basis of the ideal.

11



4.2 k-Covers and k-Dominating Sets

We begin by recalling that a graph G is domination-critical if, for any two non-adjacent vertices u, v,
the graph G′ := G+(u, v) has γ(G′) = γ(G)−1. In other words, a graph G is domination-critical if,
whenever any edge is added to G, the domination number decreases by one. Thus, k-domination-
critical graphs are created from k-dominating graphs by adding edges. In this section, we study
the complements of domination-critical graphs. We define a k-domination-cover (or k-cover) as
analogous to a k-dominating graph, and a minimal k-cover as analogous to a k-domination-critical
graph. Just as a domination-critical graph is obtained from a k-dominating graph by adding edges,
a minimal k-cover is obtained from a k-cover by removing edges.

Before we begin, we recall a few definitions and introduce some notation. Kn denotes the
complete graph in n vertices (an n-clique). For S ⊆ V (G), the open neighborhood of S (denoted
by NG(S), or simply N(S) when the context of the graph is clear) is defined to be

NG(S) := {v : (u, v) ∈ E(G) and u ∈ S and v /∈ S} .

The common neighborhood of S ⊆ V (G) (denoted by cmNG(S), or simply cmN(S) when the
context of the graph is clear) is defined to be

cmNG(S) :=
⋂

u∈S

NG(u) .

Example 4.4 In the following example, let S = {0, 1, 3}. Then cmN(S) = {6}.

0
1

2
3

4 5

6
7

Definition 4.5 A graph C is a k-cover if cmNC(S) 6= ∅ for all S ⊆ V (C) with |S| = k − 1.

We say that a graph C is a k-cover if every set of size k − 1 has a common neighbor. We note
that k-covers are only defined for k ≥ 2.

Definition 4.6 A k-cover C is minimal if for all e ∈ E(C), C ′ := C − e is not a k-cover.

Example 4.7 Here we see a minimal 3-cover (left) and its complement (right).

0 1 2

3 4

5
complement of C

04

5

1

2

3

3-cover C

We refer to graphs of the type described by Definition 4.5 as k-covers, because we are taking
n vertices and then “covering” those n vertices with k-cliques such that the k-cliques intersect in
a very particular way. Notice that the 3-cover illustrated in Ex. 4.7 takes six vertices, and then
“covers” those six vertices with triangles such that any subset of size two has a common neighbor.
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Proposition 4.8 Given a k-cover C, every v ∈ V (C) appears in a clique of size k.

Proof: Since every set of size k− 1 in V (C) has a common neighbor, every vertex has at least one
outgoing edge. Thus, for any v1 ∈ V (C), v1 is adjacent to some v2. If 2 ≤ k− 1, both v1 and v2 are
each adjacent to a third vertex v3. In other words, v1, v2 and v3 form a 3-clique. By repeating this
process k−1 times, we form a k-clique containing v1. Since v1 was an arbitrary starting point, this
algorithm can be repeated for any vertex, and every v ∈ V (C) appears in a clique of size k. 2

We also observe that while 2-covers can be disconnected, k-covers with k ≥ 3 are connected.
Additionally, since the diameter of a graph is the longest shortest path between any two vertices,
and every two vertices has a common neighbor, k-covers with k ≥ 3 have diameter at most two.

Proposition 4.9 A graph G is k-domination-critical if and only if G is a minimal k-cover.

Proof: If G is k-domination-critical, then G has a dominating set of size k, but no dominating
set of size k − 1. Thus, every (k − 1)-subset of vertices in G has a common neighbor, and G is
a k-cover. Furthermore, since G is k-domination-critical, for any two non-adjacent vertices u, v,
γ
(
G + (u, v)

)
= k − 1. In other words, if any edge (u, v) is removed from G, then there is at least

one (k−1)-subset of vertices that no longer has a common neighbor. Thus, G is a minimal k-cover.

Conversely, assume that G is a minimal k-cover. Then, for all e ∈ E(G), G− e is not a k-cover.
This implies that there is some set D ⊆ V (G) of size k− 1 that does not have a common neighbor.
In other words, for all v ∈ (

V (G) \D
)
, v is not adjacent to some vertex in D. In other words, D

is a dominating set of size k − 1 in G. Thus, we have shown that when any edge is added to G
(or removed from G), there is a dominating set of size k − 1 in G. Thus, in order to prove that G
is k-domination-critical, it remains to show that there exists a dominating set of size k in G, and
that there does not exist a dominating set of size k − 1 in G.

Clearly, there is no dominating set of size k − 1 in G, since G is a k-cover. We will now show
that G contains a dominating set of size k. Consider any two non-adjacent vertices u, v ∈ V (G).
Without loss of generality, let D = {i1, . . . , ik−2, u} be the dominating set of size k−1 in G+(u, v).
Since D is a dominating set in G + (u, v), but not a dominating set in G, the only vertex that D
does not dominate in G is v. Thus, D + v is a dominating set in G, and since |D + v| = k, G is
k-domination-critical. 2

We note that in [29], Sumner and Blitch extensively explore properties of 3-domination-critical
graphs. They explicitly categorize 2-domination graphs with the following theorem:

Theorem 4.10 (Sumner and Blitch, 1983) A graph G is 2-domination-critical if and only if
G = ∪n

i=1K1,ni with n ≥ 1.

The Sumner-Blitch categorization of 2-domination-critical graphs is equivalent to Definition 4.5,
since for any 2-cover, every vertex is adjacent to at least one other vertex.

Example 4.11 Here we see a 2-cover on 16 vertices. We note that this 2-cover is the union of
two K1,3 graphs, two K1,2 graphs, and a K1,1 graph. Additionally, every single vertex (every set S
with |S| = 1) has a common neighbor.
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Our categorization is an extension of the Sumner-Blitch categorization since Definition 4.5 is
generalized for the complements of k-dominating graphs, although further characterizations are
needed for minimal k-covers. We now link minimal k + 1-covers with k-dominating graphs.

Theorem 4.12 A graph G = (V, E) has a dominating set of size k if and only if for all minimal
k + 1-covers C = (V, Ecov), E(G) ∩ Ecov 6= ∅.

Via this theorem, we characterize graphs with dominating sets of size one in terms of 2-covers.
Since one is the smallest dominating set, this explains why we only define k-covers for k ≥ 2.

Proof: Assume G = (V, E) has a dominating set D ⊆ V (G) of size k. Consider any minimal
k + 1-cover C = (V, Ecov). Since D is also a subset of V (C), and since |D| = k, by Definition 4.5,
D has a common neighbor v in C. Thus, for every u ∈ D, (u, v) ∈ Ecov. Since D is a dominating
set in G and v /∈ D, there must exist an edge (u, v) ∈ E(G) with u ∈ D. Since (u, v) ∈ E(G) and
(u, v) ∈ Ecov, E(G) ∩ Ecov 6= ∅.

Conversely, assume that for all minimal k + 1-covers C = (V,Ecov), E(G)∩Ecov 6= ∅. We must
show that G contains a dominating set of size k. We proceed by contradiction. Assume that G does
not contain a dominating set of size k, and form a new graph Gcrit by adding edges to G until the
resulting graph is k + 1-domination-critical. Thus, E(G) ⊆ E(Gcrit), and Gcrit has a dominating
set of size k + 1, but no dominating set of size k.

Next, we consider the complement of Gcrit (denoted by Gcrit). Since Gcrit is k+1-critical, Gcrit is
a minimal k+1-cover by Proposition 4.9. We note that E(Gcrit) ⊆ E(G), and E(Gcrit)∩E(Gcrit) =
∅. However, E(G) ⊆ E(Gcrit). Therefore, E(Gcrit) ∩ E(G) = ∅. But this is a contradiction, since
Gcrit is a minimal k + 1-cover, and E(G) ∩ Ecov 6= ∅, for all minimal k + 1-covers C = (V,Ecov).
Thus, G must contain a dominating set of size k. 2

We note that, according to Thm. 4.12, in order to demonstrate that a graph G does not have
dominating set of size k, it is sufficient to produce a k+1-cover C that is a subgraph of G. This k+1-
cover then becomes a certificate of the non-existence of a k-dominating set: it is a coNP certificate.
However, even though the cover itself is polynomial-size in |G|, there are no known polynomial-time
algorithms for verifying that every k-subset of C has a common neighbor. Therefore, there is no
conflict between the use of k-covers as certificates, and the conjectured inequality of NP and coNP.

We now explore properties of k-covers.

Theorem 4.13 A graph C is a k-cover if and only if, for all S ⊆ V (C) with 1 ≤ |S| ≤ k−1, there
exists a clique Q in cmNC(S) such that |Q| = k− |S|. Moreover, every v ∈ cmNC(S) appears in a
clique Q of size k − |S|.

Proof: Assume that a graph C is a k-cover. Given S ⊆ V (C), if |S| = k−1, we know by definition
of a k-cover that cmN(S) is non-empty. Therefore, a clique Q of size one exists in cmN(S), and
moreover, all vertices in cmN(S) trivially form cliques of size one.

Now consider S ⊆ V (C) with 1 ≤ |S| ≤ k − 2. As before, by definition, since |S| < k − 1,
cmN(S) is non-empty. Let v1 ∈ cmN(S). Since |S ∪ v1| ≤ k − 1, the set S ∪ v1 has a common
neighbor v2. Thus, the set {v1, v2} forms a clique of size two in cmN(S). If |S ∪ v1 ∪ v2| ≤ k − 1,
we repeat this operation, and we note that the set S ∪ v1 ∪ v2 has a common neighbor v3, and that
{v1, v2, v3} forms a clique of size three in cmN(S). We repeat this operation exactly k − |S| − 1
times until we have formed the k − |S|-clique Q = {v1, v2, . . . , vk−|S|} in cmN(S).
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Therefore, for all 1 ≤ |S| ≤ k − 1, there exists a clique Q in cmN(S) such that |Q| = k − |S|.
Moreover, every v ∈ cmN(S) appears in a clique Q of size k − |S|, since this operation can be
repeated with reference to any vertex v.

Conversely, let C be a graph such that for all S ⊆ V (C) with 1 ≤ |S| ≤ k − 1, there exists
a clique Q in cmN(S) such that |Q| = k − |S|. In particular, let S be a subset of V (C) with
|S| = k − 1. Then, there exists a clique Q of size one in cmN(S). Therefore, by definition, C is a
k-cover. 2

We have already shown that every vertex in a k-cover appears in a k-clique. However, we have
not discussed the intersection of these k-cliques. We present the following conjecture.

Conjecture 4.14 A graph C is a k-cover if and only if for all S ⊆ V (C) with |S| = k − 1, there
exists a map q from v ∈ S to k-cliques in C such that for any u, v ∈ S, |q(u) ∩ q(v)| ≥ k − 2.

Example 4.15 Here is an example of Conjecture 4.14 on a 3-cover of 7 vertices.

a b

c d e

f

g

Consider S = {c, g}. Then, if q(c) = {c, d, f} and q(g) = {a, f, g}, |q(c)∪q(g)| = |{f}| = 1 = k−2.
Additionally, consider S = {e, g}. Then, if q(e) = {b, d, e} and q(g) = {a, b, g}, |q(e) ∪ q(g)| =
|{b}| = 1 = k− 2. Upon inspection, we can see that given any set S with |S| = k− 1 = 2, a similar
map q can be constructed and the conjecture holds. 2

4.3 k-Covers, k-Dominating Sets and a Universal Gröbner Basis of I(n, k, n′, l, r)

In Section 4.1, we outlined a representation of the k-dominating set problem as a system of poly-
nomial equations, and defined the ideal I(n, k, n′, l, r). In Theorem 4.1, I(n, k, n′, l, r) was defined
by three, high-degree polynomials P k

G, P l
H and P r

G2H , and their associated boolean edge equations.
Each of these polynomials was a series of products, with each product a sum of products. Thus,
the polynomials P k

G, P l
H and P r

G2H were a brute-force enumeration of every possible vertex set of
size k, dominating or otherwise, in the graph.

In this section, we present another representation of the ideal I(n, k, n′, l, r). This representation
is based on k + 1-covers, with each polynomial equation corresponding to a minimal k + 1-cover of
V (G). Thus, I(n, k, n′, l, r) can also be generated by many different polynomials of comparatively
low degree, as opposed to only three polynomials of high degree. However, there is currently no
known algorithm for enumerating minimal k + 1-covers, which is equivalent to the problem of
enumerating k + 1-domination-critical graphs. Thus, another point of comparison between the
representation expressed here and Theorem 4.1 is that the polynomials described in Theorem 4.1
can be explicitly written down, whereas polynomials based on k + 1-covers, while combinatorially
explicit, may be difficult to write down explicitly enough for the purpose of computation. However,
the potential advantage of the cover representation is that k +1-covers are collections of edges that
satisfy the linear factor criterion (Definition 3.2). Therefore, by Theorem 3.3 and Corollary 3.5,
the representation described below is a universal Gröbner basis.

In presenting a combinatorial interpretation of any Gröbner basis, we must be particularly
careful of input instances where the system of polynomial equations is infeasible. In these cases,

15



the associated variety is empty and the associated ideal is the entire ring. This implies that the
universal Gröbner basis is simply the number one. In our case, we will exclude input instances
where the system of polynomial equations is infeasible by restricting the values of n, n′, k and l.
However, in Theorem 5.11, we will show that the instances lost by this restriction correspond
exactly to instances where Vizing’s conjecture is known to be true.

Before we begin, we introduce some notation. Let C n
k+1 be the set of all minimal k + 1-covers

on n vertices. For C ∈ C n
k+1, let

P (C) :=
∏

e∈E(C)

(e− 1) .

Theorem 4.16 There is a bijection between the set of solutions of the following system of polyno-
mial equations and the labeled graphs G in n vertices with a dominating set of size k.

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n ,

P (C) = 0 , for each C ∈ C n
k+1 . (7)

We note that if k = n, there are no n + 1 covers on n vertices. Thus, C n
n+1 = ∅, and the only

equations that appear are of the form e2 − e = 0. Thus, any graph is a solution to this system,
which is reasonable since every graph has a dominating set of size n.

Proof: As in the proof of Theorem 4.1, we must define a map φ and show that φ provides a
bijection between the set of solutions and the set of graphs with a dominating set of size k. We will
use the same map φ defined in the proof of Theorem 4.1, and thus, we already know that the map
is one-to-one, and we only need show that the image of φ is the set of graphs with a dominating
set of size k, and that the map is onto.

To consider the image of the map φ, we note that, as in Theorem 4.1, every solution corresponds
to a particular graph G (the assignment of the variables eij to zero or one simply turns the edges
“on” or “off” in G). Since the cover equations (Eqs. 7) are satisfied, this implies that for all minimal
k + 1-covers, E(G) ∩ E(C) 6= ∅. Then, by Theorem 4.12, G has a dominating set of size k.

To show that φ is onto, consider a graph G in n vertices that has a dominating set of size k.
As before, we must show that φ−1(G) (defined by setting variables eij to zero or one, depending
on whether or not eij ∈ E(G)) maps to a solution. Clearly, the boolean equations e2

ij − eij = 0
are satisfied. Since the graph G has a dominating set of size k, for any minimal k + 1-cover C,
E(G) ∩ E(C) 6= ∅ by Theorem 4.12. Therefore, at least one edge in every cover is “on” and the
cover equations (Eqs. 7) are satisfied. 2

Let I(n, k) denote the ideal generated by polynomials described in Theorem 4.16. We will
now prove that this representation is a universal Gröbner basis. We note that we discovered the
connection between covers and Gröbner bases by experimental investigations using CoCoA Lib [1].

Corollary 4.17 The basis I(n, k) described in Theorem 4.16 is a universal Gröbner basis.

Proof: We must show that {P (C) : C ∈ C n
k+1} satisfies the linear factor criterion (Def. 3.2). Let

Ci, Cj , Ck be covers in C n
k+1. Since each are minimal covers, it is clear that Ck can never be a

proper subset of Ci \Ci ∩Cj or Ci \Ci ∩Cj . From Theorem 3.3 and Corollary 3.5, we can see that
the basis of I(n, k) described in Theorem 4.16 is a universal Gröbner basis. 2
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In Section 4.1, we used the system of polynomial equations defined in Theorem 4.1 to model
the larger question of dominating sets in graphs G,H and G2H (Theorem 4.3). We will repeat the
process here, using the cover-based model from Theorem 4.16 as a building block. However, a system
of polynomial equations based on k+1-covers is also intrinsically based on graph intersections. Thus,
we must define the edge variables that appear in the intersection of an arbitrary r-cover on nn′

vertices and an arbitrary product graph.

Definition 4.18 Given graphs G and H, let C be a graph on the vertices V (G)×V (H). Then the
set ∩2C ⊆ (

E(G) ∪ E(H)
)

is defined to be the following set of edges:

∩2C =
{
(g, g′) : (gh, g′h) ∈ E(C)

} ∪ {
(h, h′) : (gh, gh′) ∈ E(C)

}
.

Now we present the cover-based model that links dominating sets in G,H and G2H. As
before, this system of polynomial equations will be used in the algebraic representation of Vizing’s
conjecture in Section 5, and the restriction on the values of n, k, n′, l and r will be more meaningful
in that context.

Theorem 4.19 Let n, k, n′, l and r be integers such that r ≥ min(n, n′). There is a bijection be-
tween the set of solutions of the following system of polynomial equations and the set of labeled
graphs G,H in n, n′ vertices with dominating sets of size k, l respectively such that their Cartesian
product graph G2H has a dominating set of size r.

Representing a graph G in n vertices with a dominating set of size k:

e2
ij − eij = 0 , for 1 ≤ i < j ≤ n,

P (C) = 0 , for each C ∈ C n
k+1 .

Representing the graph H in n′ vertices with a dominating set of size l:

e′2ij − e′ij = 0 , for 1 ≤ i < j ≤ n′,

P (C) = 0 , for each C ∈ C n′
l+1 .

Representing the Cartesian product graph G2H with a dominating set of size r:

P
( ∩2 C

)
= 0 , for each C ∈ C nn′

r+1 .

Proof: It is clear from Theorem 4.16 that there is a bijection between the solutions of the equations
representing graphs G and H and the set of labeled graphs in n, n′ vertices with dominating sets of
size k, l respectively. The equation representing G2H is of the same form, except that this equation
takes into account the unique structure of the product graph.

Assume that G2H has a dominating set D ⊆ V (G2H) of size r. We will show that the cover
equations associated with G2H are satisfied. Let Cnn′

r+1 be a minimal r+1-cover on V (G2H). Since
Cnn′

r+1 is an r + 1-cover, every subset of size r has a common neighbor in V (Cnn′
r+1) = V (G2H). In

particular, D has a common neighbor gh ∈ V (Cnn′
r+1). Since D is a dominating set of G2H and gh is

not in D, the vertex gh must be dominated by a vertex in D. Therefore, either gh′ ∈ D with (h, h′) ∈
E(H), or g′h ∈ D with (g, g′) ∈ E(G). In first case, the edge (gh′, gh) ∈ E(Cnn′

r+1)∩E(G2H), and in
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the second case, the edge (g′h, gh) ∈ E(Cnn′
r+1)∩E(G2H). In either case, E(Cnn′

r+1)∩E(G2H) 6= ∅,
and each of the cover equations associated with G2H are satisfied.

Conversely, assume that each of the cover equations associated with G2H are satisfied. We
must show that G2H has a dominating set of size r. We proceed by contradiction. Assume that
G2H does not have a dominating set of size r, and consider the complement of G2H (denoted by
G2H).

Since G2H does not contain a dominating set of size r, every subset of size r in V (G2H)
has a common neighbor. Thus, by Definition 4.5, G2H is a r + 1-cover. Furthermore, E(G2H) ∩
E(G2H) = ∅. We remove edges from G2H until we find a subgraph C that is a minimal r+1-cover.
Since C is a subgraph of G2H, E(G2H) ∩ E(C) = ∅. However, edges in C of the form (gh, g′h′)
where g 6= g′ and h 6= h′ do not correspond to variables in our system of polynomial equations, and
thus, we have not yet shown that the set ∩2C is non-empty and the equation P (∩2C) = 0 is not
satisfied. We must show that C contains at least one edge of the form (gh, g′h) or (gh, gh′).

By assumption, r ≥ min(n, n′). Without loss of generality, let n′ = |V (H)| ≥ n = |V (G)| and
let S ⊆ V (C) = V (G2H) be a subset of size r such that {g : gh ∈ S} = V (G). In other words,
choose S such that there is at least one vertex in S per G-level. Since C is an r + 1-cover, S has
a common neighbor gh ∈ V (C), and since gh is connected to every vertex in S and there is at
least one vertex per G-level in S, there exists a vertex gh′ ∈ S. Thus, (gh, gh′) ∈ E(C), which
implies that the set ∩2C is non-empty. But recall that E(G2H) ∩ E(C) = ∅, which implies that
the equation P (C) = 0 is not satisfied. This is a contradiction with our assumption that each of
the cover equations associated with minimal r + 1-covers are satisfied. Thus, G2H must contain a
dominating set of size r. 2

The ideal described by Theorem 4.19 is the set of polynomials vanishing on graphs G,H with
dominating sets k, l respectively, such that G2H has a dominating set of size r. Thus, the ideal de-
scribed by Theorem 4.19 is the same as the ideal described by Theorem 4.3: both are I(n, k, n′, l, r).
However, the question of whether the basis described by Theorem 4.3 is a universal Gröbner basis is
not immediately resolvable. Given two r +1-covers C and C ′ on nn′ vertices, it does seem possible
that for large values of r and smaller values of k and l, a k +1-cover on n vertices (or an l +1-cover
on n′ vertices) might be a proper subgraph of C ∩ C ′. In such a scenario, the collection of linear
factors would not satisfy the linear factor criterion described by Definition 3.2, and the basis would
not be a universal Gröbner basis. The natural question to then pose is the following: for what
values of r is the cover representation of I(n, k, n′, l, r) a universal Gröbner basis? In Section 5, we
will show that this question is equivalent to Vizing’s conjecture.

5 An Algebraic Representation of Vizing’s Conjecture

We now express Vizing’s conjecture in terms of the ideals described in Section 4. By defining
two particular zero-dimensional, radical ideals and then intersecting them, we transform Vizing’s
conjecture from a question about dominating sets and product graphs to an ideal membership
question involving the product of two polynomials. This algebraic representation suggests a variety
of computational approaches, from large-scale, sparse linear algebra computations such as those
demonstrated in [21, 20, 23] to Gröbner basis calculations customized for the linear factor criterion
(Def. 3.2). Although Gröbner basis computations and the ideal membership question itself are both
known to be EXPSPACE-complete [13], algebraic algorithms customized for specific NP-complete
combinatorial properties (such as graph 3-colorability) have yielded surprisingly practical compu-
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tation approaches on some large examples [20]. However, refinements to known algorithms based
on the algebraic and combinatorial properties of these particular dominating set representations
have not yet been explored. We leave this question for future work.

After describing the algebraic representation of Vizing’s conjecture, we then transfer the ideal
membership question involving the product of two cover polynomials back to the realm of graph
theory. This transformation yields a conjecture involving k-covers that turns out to be the comple-
ment of Vizing’s conjecture. We conclude by reclaiming a known result with a cover-based proof,
and also by linking universal Gröbner basis to Vizing’s conjecture.

5.1 Ideals, Varieties and Vizing’s Conjecture

We begin by defining three different varieties, and then relating the vanishing ideals associated
with these varieties to the ideals described in Section 4. Each of the following varieties are a set of
points such that each point represents a pair of graphs G,H in n, n′ vertices such that G2H has a
dominating set of size kl − 1. Additionally,

1. Let V k−1
l be a variety such that every point represents a pair of labeled graphs G,H with

dominating sets of size k − 1, l respectively.

2. Let V k
l−1 be a variety such that every point represents a pair of labeled graphs G,H with

dominating sets of size k, l − 1 respectively.

3. Let V k
l be a variety such that every point represents a pair of labeled graphs G,H with

dominating sets of size k, l respectively.

Throughout this section, graphs are always labeled graphs. We now define the following ideals.

Ik−1
l := I(n, k − l, n′, l, kl − 1) , Ik

l−1 := I(n, k, n′, l − l, kl − 1) , Ik
l := I(n, k, n′, l, kl − 1) .

Notice that in each of these ideals, we have set r = kl − 1. According to the definitions of
I(n, k, n′, l, r) given in Section 4, V k

l = V (Ik
l ), V k−1

l = V (Ik−1
l ) and V k

l−1 = V (Ik
l−1). Recall that if

a given ideal I is radical, then I(V (I)) = I. Since the ideals Ik
l , Ik−1

l and Ik
l−1 are radical (by Lemma

2.1), regardless of whether we choose the representation of Ik
l from Section 4.1, or the representation

of Ik
l from Section 4.3, Ik

l = I(V k
l ), Ik−1

l = I(V k−1
l ) and Ik

l−1 = I(V k
l−1). In the following lemmas, we

will relate Vizing’s conjecture to these ideals and varieties. It is important to note that the algebraic
representation of Vizing’s conjecture described below is independent of the internal representation
of the ideal I(n, k, n′, l, r). In other words, the following lemmas will hold for any representation
of Ik

l , Ik−1
l and Ik

l−1 as long as the ideals are radical, and Ik
l = I(V k

l ), Ik−1
l = I(V k−1

l ) and Ik
l−1 =

I(V k
l−1). Thus, if another representation of I(n, k, n′, l, r) is found in the future with a differing set

of computational or combinatorial properties, this formulation of Vizing’s conjecture remains valid.

Lemma 5.1 V k−1
l ∪ V k

l−1 = V k
l if and only if then Vizing’s conjecture is true.

Proof: Every point in V k
l corresponds to a graph G with γ(G) ≤ k and a graph H with γ(H) ≤ l

such that γ(G2H) ≤ kl − 1.

Assume that Vizing’s conjecture is true. Thus, γ(G)γ(H) ≤ γ(G2H) for all graphs G,H. In
particular, if γ(G) = k and γ(H) = l, then kl ≤ γ(G2H). In particular, γ(G2H) can never equal
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kl−1. Thus, if there is a pair of graphs G,H such that γ(G2H) ≤ kl−1, then either γ(G) ≤ k−1 or
γ(H) ≤ l−1. Thus, any point appearing in V k

l also appears in V k−1
l ∪V k

l−1, and V k−1
l ∪V k

l−1 = V k
l .

Conversely, assume that V k−1
l ∪ V k

l−1 = V k
l . Then, for every pair of graphs G,H such that

γ(G2H) ≤ kl − 1, then either γ(G) ≤ k − 1 or γ(H) ≤ l − 1. In other words, if γ(G) = k and
γ(H) = l, then γ(G2H) > kl − 1. This implies that γ(G)γ(H) ≤ γ(G2H), or that Vizing’s
conjecture is true. 2

Lemma 5.2 Ik−1
l ∩ Ik

l−1 = Ik
l if and only if Vizing’s conjecture is true.

Proof: If Ik−1
l ∩Ik

l−1 = Ik
l , then V k−1

l ∪V k
l−1 = V k

l (and vice versa). This can be seen via the results
in Section 2, since if Ik−1

l ∩ Ik
l−1 = Ik

l , then V (Ik−1
l ∩ Ik

l−1) = V (Ik−1
l ) ∪ V (Ik

l−1) = V k−1
l ∪ V k

l−1 =
V (Ik

l ) = V k
l . Thus, Vizing’s conjecture is true via Lemma 5.1. 2

We have now equated Vizing’s conjecture with a question about the equality of two ideals. To
prove this equality, we must prove the inclusion in both directions. The inclusion in one direction
is fairly easy to see; however, the inclusion in the other direction remains open.

Lemma 5.3 V k−1
l ∪ V k

l−1 ⊆ V k
l .

Proof: Consider any point p in V k−1
l ∪ V k

l−1. This point either represents graphs G,H with
dominating sets k − 1, l respectively, or graphs G,H with dominating sets k, l − 1 respectively (in
both cases, G2H contains a dominating set of size kl−1). However, if G contains a dominating set
of size k − 1 (or l − 1), G also contains a dominating set of size k (or size l). Therefore, any point
representing graphs G,H with dominating sets k−1, l respectively, or graphs G,H with dominating
sets k, l − 1 respectively also represents graphs G, H with dominating sets k, l respectively. Thus,
any point p ∈ V k−1

l ∪ V k
l−1 is also a point p ∈ V k

l . 2

Corollary 5.4 Ik
l ⊆ Ik−1

l ∩ Ik
l−1.

Proof: Since V k−1
l ∪ V k

l−1 ⊆ V k
l , this implies that I(V k

l ) ⊆ I
(
V k−1

l ∪ V k
l−1

)
, which implies that

Ik
l ⊆ Ik−1

l ∩ Ik
l−1 (see [8], Chapter 4). 2

Thus, in order to conclude a proof Vizing’s conjecture, we must show that Ik−1
l ∩ Ik

l−1 ⊆ Ik
l .

However, recall from the conclusion of Section 2, if the representations of Ik
l , Ik−1

l and Ik
l−1 satisfy

the conditions specified in Lemma 2.2, we can explicitly describe a basis for Ik−1
l ∩ Ik

l−1:

Ik−1
l ∩ Ik

l−1 =
√

Ik−1
l · Ik

l−1 =
〈
fg : f ∈ Ik−1

l , g ∈ Ik
l−1

〉
+ 〈e2 − e〉 .

Thus far in this section, without specifying the representation for Ik
l , etc., we have shown that

proving Vizing’s conjecture is equivalent to proving the equality of two ideals . We will now show
that for each of the representations specified in Section 4, proving the opposite inclusion reduces
to a problem in ideal membership, which implies, far more significantly, that proving Vizing’s
conjecture reduces to a computational problem in Gröbner bases or linear algebra.
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Using the Representation from Theorem 4.3:

Let h be any polynomial in Ik−1
l ∩ Ik

l−1, where Ik−1
l and Ik

l−1 are represented using the system of
polynomials defined by Theorem 4.1. Then h ∈ Ik−1

l ∩ Ik
l−1 can be written as follows:

h = (·)P k−1
G P k

G + (·)P k−1
G P l−1

H + (·)P k−1
G PG2H + (·)P k−1

G (e2 − e) + (·)P l
HP k

G + (·)P l
HP l−1

H

+ (·)P l
HPG2H + (·)P l

H(e2 − e) + (·)PG2HP k
G + (·)PG2HP l−1

H + (·)PG2HPG2H + (·)PG2H(e2 − e)

+ (·)(e2 − e)P k
G + (·)(e2 − e)P l−1

H + (·)(e2 − e)PG2H + (·)(e2 − e)(e2 − e) + (·)(e2 − e) , (8)

where PG2H is equal to P kl−1
G2H . We must show that h is also in Ik

l . Specifically, we must show that
there exists polynomial coefficients such that

h = (·)P k
G + (·)P l

H + (·)PG2H + (·)(e2 − e) . (9)

Comparing Eqs. 8 and 9, we see that the only term which is not already expressed in terms of
polynomials in Ik

l is the product P k−1
G P l−1

H . Thus, we must find an algebraic relationship or a
syzygy such that

P k−1
G P l−1

H = (·)P k
G + (·)P l

H + (·)PG2H + (·)(e2 − e) . (10)

This is equivalent to asking whether or not P k−1
G P l−1

H ∈ Ik
l . We note this link between Vizing’s

conjecture and ideal membership: a conjecture about dominating sets in product graphs reduces
to an ideal membership question concerning the product of two polynomials.

Lemma 5.5 P k−1
G P l−1

H ∈ Ik
l if and only if Vizing’s conjecture is true.

Proof: If P k−1
G P l−1

H ∈ Ik
l , then any polynomial h ∈ Ik−1

l ∩ Ik
l−1 is also in Ik

l . In other words,
Ik−1
l ∩ Ik

l−1 ⊆ Ik
l . Lemma 5.3 and Corollary 5.4 establish the other direction of the inclusion,

and Ik−1
l ∩ Ik

l−1 = Ik
l . Thus, by Lemma 5.2, Vizing’s conjecture is true. Conversely, if Vizing’s

conjecture is true, then Ik−1
l ∩ Ik

l−1 = Ik
l , which implies that P k−1

G P l−1
H ∈ Ik

l . 2

Unfortunately, performing these computations was quite difficult. We worked on machines with
dual Opteron nodes, 2 GHz clock speed, and 12 GB of RAM. We used the custom C++ exact
arithmetic linear algebra solver and the method described in [21], [20] and [23]. We first tested the
smallest possible example of n = k = n′ = l = 2. In order to find the syzygy defined by Eq. 10,
we constructed a 100 × 84 linear system, solved in under a second, yielding a syzygy of degree 6.
However, when we tested the next largest example, with n = 3, k = n′ = l = 2, we were unable to
find a syzygy, although we determined that the syzygy had degree 8 or larger. The degree 7 linear
algebra system had size 158, 412 × 2, 310 and took 6,862 seconds (≈ 2 hours) to solve. However,
the degree 8 linear algebra system remained unsolved even after days of computation, most likely
due to the magnitude of the numbers involved. For example, one of the coefficients in P k

G was
2,106,048,060. It is easy to imagine the computationally intensive nature of exact arithmetic on
numbers of that order in a linear system with millions of rows and columns. However, we again
note that the specific combinatorial properties of these representations have not yet been exploited.
It is a question of future work to improve these computations.

Using the Representation from Theorem 4.19:

In Lemma 5.5, we showed that proving Vizing’s conjecture using the representation described
by Theorem 4.3 was equivalent to proving that P k−1

G P l−1
H ∈ Ik

l . We now show that when the
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representation of Ik
l corresponding to covers (Theorem 4.19) is used, Vizing’s conjecture reduces to

both an ideal membership question involving the product of two cover polynomials, and a graph
theoretic question that is the complement of Vizing’s conjecture.

In the cover representation of Ik
l , we denote the various cover polynomials as P (Cn

k ), P (Cn′
l )

and P
( ∩2 Cnn′

kl

)
. As before, h ∈ Ik−1

l ∩ Ik
l−1 can be written as follows:

h = (·)P (Cn
k )P (Cn

k+1) + (·)P (Cn
k )P (Cn′

l ) + (·)P (Cn
k )P

( ∩2 Cnn′
kl

)
+ (·)P (Cn

k )(e2 − e)

+ (·)P (Cn′
l+1)P (Cn

k+1) + (·)P (Cn′
l+1)P (Cn′

l ) + (·)P (Cn′
l+1)P

( ∩2 Cnn′
kl

)
+ (·)P (Cn′

l+1)(e
2 − e)

+ (·)P ( ∩2 Cnn′
kl

)
P (Cn

k+1) + (·)P ( ∩2 Cnn′
kl

)
P (Cn′

l ) + (·)P ( ∩2 Cnn′
kl

)
P

( ∩2 Cnn′
kl

)

+ (·)P ( ∩2 Cnn′
kl

)
(e2 − e) + (·)(e2 − e)P (Cn

k+1) + (·)(e2 − e)P (Cn′
l ) + (·)(e2 − e)P

( ∩2 Cnn′
kl

)

+ (·)(e2 − e)(e2 − e) + (·)(e2 − e) . (11)

Again, to conclude the proof of Vizing’s conjecture, we must show that h ∈ Ik
l . Specifically, we

must show that there exist coefficients such that

h = (·)P (Cn
k+1) + (·)P (Cn′

l+1) + (·)P ( ∩2 Cnn′
kl

)
+ (·)(e2 − e) . (12)

Comparing Eqs. 11 and 12, we see that the only term which is not already expressed in terms of
polynomials in Ik

l is the product P (Cn
k )P (Cn′

l ). Thus, we must find an algebraic relationship or a
syzygy such that

P (Cn
k )P (Cn′

l ) = (·)P (Cn
k+1) + (·)P (Cn′

l+1) + (·)P ( ∩2 Cnn′
kl

)
+ (·)(e2 − e) .

This is equivalent to asking whether or not P (Cn
k )P (Cn′

l ) ∈ Ik
l . However, recall that the cover

representations are not just a basis, but a universal Gröbner basis. Our experimental investigations
using CoCoA Lib [1] have indicated that that not only is P (Cn

k )P (Cn′
l ) ∈ Ik

l , but that there exists
a P

( ∩2 Cnn′
kl

)
such that P (Cn

k )P (Cn′
l ) = P

( ∩2 Cnn′
kl

)
. In other words, P (Cn

k )P (Cn′
l ) is itself an

element of the Gröbner basis of Ik
l . We were not able to verify this conjecture on large examples

because of the exponential number of monomials in the expanded cover polynomials. For example,
P (Cn

k ) may be compactly represented as a product of L linear factors, but when P (Cn
k ) is expanded

during the calculation of the Gröbner basis, 2L monomials are generated. Indeed, even very small
examples often took days of computation. We are interested in exploring modifications to Gröbner
basis algorithms to exploit the factored form of these input bases for future work.

We will now prove several lemmas and extrapolate the conjecture that there exists a polynomial
P

( ∩2 Cnn′
kl

)
such that P (Cn

k )P (Cn′
l ) = P

( ∩2 Cnn′
kl

)
to a very specific graph theory conjecture.

Recall that ∩2Cnn′
kl (Definition 4.18) denotes a specific set of edges.

Lemma 5.6 Given a minimal k-cover Cn
k and a minimal l-cover Cn′

l , if there exists a (kl)-cover
Cnn′

kl such that E
(
Cn

k 2Cn′
l

)
= ∩2Cnn′

kl , then Vizing’s conjecture is true.

Proof: If there exists a (kl)-cover Cnn′
kl such that E

(
Cn

k 2Cn′
l

)
= ∩2Cnn′

kl , then P (Cn
k )P (Cn′

l ) =
P

( ∩2 Cnn′
kl

)
, and P (Cn

k )P (Cn′
l ) ∈ Ik

l . Thus, Ik−1
l ∩ Ik

l−1 = Ik
l , and Vizing’s conjecture is true. 2

We will now define a product graph that specifically relates to the ∩2 intersection.

Definition 5.7 Given graphs G and H, the star product GFH has vertex set V (G)× V (H) and
edge set E(GFH) = E(G2H) ∪ {

(gh, g′h′) : g 6= g′ and h 6= h′
}

.
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Proposition 5.8 Given a k-cover Cn
k and a l-cover Cn′

l , then E
(
Cn

k 2Cn′
l

)
= ∩2

(
Cn

k FCn′
l

)
.

Proof: This follows directly from Definitions 4.18 and 5.7. 2

We note that C = Cn
k FCn′

l contains the largest amount of edges such that ∩2C = Cn
k 2Cn′

l .
The question that remains is the following.

Conjecture 5.9 Given minimal k, l-covers Cn
k , Cn′

l , Cn
k FCn′

l is a kl-cover.

This is the complement of Vizing’s conjecture. We observe that we can easily prove two of the
known properties of covers on Cn

k FCn′
l .

Proposition 5.10 Given minimal k, l-covers Cn
k , Cn′

l , every vertex in V (Cn
k FCn′

l ) is contained in
a kl-clique.

Proof: Let gh be a vertex in Cn
k FCn′

l . We must show that gh appears in a kl-clique. Since Cn
k , Cn′

l

are a k, l-covers respectively, g appears in a k-clique in Cn
k , and h appears in an l-clique in Cn′

l . Let
g ∪{g1, . . . , gk−1} be the k-clique in Cn

k , and let h∪{h1, . . . , hl−1} be the l-clique in Cn′
l . We claim

Q =
(
g ∪ {g1, . . . , gk−1}

)× (
h ∪ {h1, . . . , hl−1}

)

is a kl-clique in Cn
k FCn′

l . Let gh and g′h′ be two vertices in Q. If g = g′, then (h, h′) ∈ Cn′
l , since

h, h′ appear in an l-clique. If h = h′, then (g, g′) ∈ Cn
k , since g, g′ appear in an k-clique. In both

cases, (gh, g′h′) is an edge in Cn
k FCn′

l . Finally, if g 6= g′ and h 6= h′, then (gh, g′h′) is an edge in
Cn

k FCn′
l by the definition of the star product. Thus, we have shown that Q is a kl-clique. 2

Additionally, we can see that if k and l are strictly greater than two, then Cn
k FCn′

l has diameter
at most two. This can be seen by choosing any two vertices gh, g′h′ in Cn

k FCn′
l , and noting that

there must exist a third vertex g′′h′′ such that g′′h′′ is adjacent to both gh and g′h′. Thus, under
these conditions, the diameter of Cn

k FCn′
l is at most two.

When framing Vizing’s conjecture in terms of covers and the star product, we can easily reclaim
the complement of a known result by El-Zahar and Pareek [9].

Theorem 5.11 Given minimal k, l-covers Cn
k , Cn′

l , such that kl− 1 < min(n, n′), then Cn
k FCn′

l is
a kl-cover.

Proof: Consider any set S of kl − 1 vertices in Cn
k FCn′

l . Let Pn
k denote Cn

k -projection of S (the
set of g coordinates such that gh is a vertex in S), and let Pn′

l denote Cn′
l -projection of S (the set

of h coordinates such that gh is a vertex in S). Since kl − 1 < min(n, n′), |Pn
k |, |Pn′

l | < min(n, n′).
Thus, there exists a vertex g′h′ such that g 6= g′ and h 6= h′. Thus, gh is adjacent to g′h′, and g′h′

is the common neighbor of S. Since S was a general set, Cn
k FCn′

l is a kl-cover. 2

Since we have shown that Cn
k FCn′

l is a kl-cover, by Lemma 5.6, we have shown that Vizing’s
conjecture holds on this class of graphs. This is the complement of the result proven in [9]. The
restriction placed on the value of r in Theorem 4.19 now becomes clear. We only define the
cover representation of Ik

l when kl − l ≥ min(n, n′). But since Vizing’s conjecture holds whenever
kl − 1 < min(n, n′), the method of intersecting ideals is defined only on the as-yet unproven cases
of Vizing’s conjecture.

We conclude by drawing a parallel between universal Gröbner bases and Vizing’s conjecture
based on our experimental investigations with CoCoA Lib [1]. Since a k + 1-cover is not a proper
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subset of a k-cover, and an l + 1-cover is not a proper subset of a l-cover, if any minimal kl-cover
can be written as Cn

k FCn′
l for some minimal Cn

k , Cn′
l , then not only is Vizing’s conjecture true, but

replacing

P
( ∩2 C

)
= 0 , for each C ∈ C nn′

kl ,

with

P
(
Cn

k FCn′
l

)
= 0 , for each Cn

k ∈ C n
k and each Cn′

l ∈ C n′
l ,

in Theorem 4.19 would yield a universal Gröbner basis for I(n, k, n′, l, r = kl − 1).
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