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Abstract We provide a first demonstration of the idea that matrix-based algorithms
for nonlinear combinatorial optimization problems can be efficiently implemented.
Such algorithms were mainly conceived by theoretical computer scientists for proving
efficiency. We are able to demonstrate the practicality of our approach by developing
an implementation on a massively parallel architecture, and exploiting scalable and
efficient parallel implementations of algorithms for ultra high-precision linear alge-
bra. Additionally, we have delineated and implemented the necessary algorithmic and
coding changes required in order to address problems several orders of magnitude
larger, dealing with the limits of scalability from memory footprint, computational
efficiency, reliability, and interconnect perspectives.

Keywords Nonlinear combinatorial optimization · Matroid optimization ·
High-performance computing · High-precision linear algebra
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1 Introduction

Our goal is to demonstrate that matrix-based algorithms for nonlinear combinato-
rial optimization problems, mainly conceived in the context of theoretical computer
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104 J. Gunnels et al.

science for proving (worst-case) computational efficiency, can be efficiently imple-
mented on massively parallel architectures by exploiting efficient (and reusable!) par-
allel implementations of algorithms for ultra high-precision (dense) linear algebra.
In this way, we hope to spark further work on leveraging a staple of high perfor-
mance computing to efficiently solve nonlinear combinatorial optimization problems
on modern computational platforms.

Matrix-based methods for combinatorial optimization are mainly conceived to
establish theoretical efficiency. There are many examples of such techniques (see
e.g., [6,7,16,22]), but they are not typically seen by sober individuals as candidates
for practical implementation. Indeed, as far as sequential algorithms go, for combi-
natorial optimization, there are often better candidates for implementation (see e.g.,
[19,20]). So our goal was to see if we could take such a matrix-based algorithm and
develop a practical parallel implementation leveraging efficient algorithms for linear
algebra.

In Sect. 2, we describe the nonlinear matroid-base optimization problem and give
a few applications. In Sect. 3, we describe the algorithm of [6], which was designed
to establish, under some technical assumptions, the polynomial-time worst-case com-
plexity of the nonlinear vectorial matroid-base optimization problem. At the heart of
the algorithm is the solution of an extremely large (dual) Vandermonde system. In
Sect. 4, we describe a strategy for solving the (dual) Vandermonde system, using a
closed form inverse. In Sect. 5, we demonstrate how the solution of a pair of simple lin-
ear-objective matroid-base optimization problems can be used to reduce to a smaller
(dual) Vandermonde system. In Sect. 6, we describe how we generate the needed
right-hand side for our (dual) Vandermonde system. In Sect. 7, we describe our paral-
lel implementation on a Blue Gene/P supercomputer. In Sect. 8, we describe strategies
to employ at extreme scale. In Sect. 9, we describe the results of our computational
experiments. Finally, in Sect. 10, we make some brief conclusions.

2 Background

Our starting point is the paper [6] which presents a theoretically efficient algorithm
for a broad class of multi-objective nonlinear combinatorial optimization problems.
The type of problem addressed is of the form

P : min { f (W (B)) : B ∈ B},

where

(1) W is a d × n matrix of integers, and W (B), the W -image of B, is defined to be
the d-vector with i th component

∑
j∈B Wi, j ,

(2) f : R
d → R is arbitrary, and

(3) B is a set of subsets of the set N := {1, 2, . . . , n} satisfying the matroid base
properties:
(B1) B �= ∅.
(B2) If B1, B2 ∈ B and e1 ∈ B1\B2, then ∃ e2 ∈ B2\B1, such that (B1\e1) ∪

{e2} ∈ B.
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High-performance computing for nonlinear combinatorial optimization 105

The system (N ,B) is a matroid with ground set N and set of bases B. Matroids
are basic objects in combinatorial optimization, usually linked with linear objective
functions. Without going into details concerning matroids (see [19,20,23]), we note
that the basis-exchange property (B2) implies that all B ∈ B have the same number
of elements, called the rank of the matroid, which we denote throughout this paper
as m. A matroid is vectorial (also called representable or matric) if there is an m-row
matrix A, with columns indexed by the ground set N such that elements of B are in
one-to-one correspondence with sets of columns of A indexing m × m non-singular
submatrices of A. Though the field used for the entries in A can be arbitrary, for the
purpose of the algorithm that we describe and our implementation, we restrict our
attention to the rationals.

A main motivation for considering the problem at hand is multi-criteria optimi-
zation, where the function f balances d different linear functions specified by the
rows of W . As we assume that the trade-off function f is completely general, our
goal is to efficiently enumerate the possible values of W -images W (B) ∈ R

d , without
enumerating all B ∈ B. Then a decision maker can compare the different achievable
d vectors and choose the best according to their trade-off function f . In this spirit,
we further assume that d is small (e.g., d = 2, 3, 4 are already interesting) and that
the entries in W are also not too large. These are technical assumptions used in [6] to
establish polynomial-time complexity.

Example 1 Multi-criteria spanning-tree optimization. Consider a connected graph G
on n edges. Let B be the set of edge-sets of spanning trees of G. Then B is the set of
bases of a (graphic, hence vectorial) matroid. We can imagine several linear criteria
on the edges of G. For example,

(1) the first row of W may encode the fixed installation cost of each edge of G ;
(2) the second row of W may encode the monthly operating cost of each edge of G ;
(3) assuming that each edge j fails independently with probability 1 − p j , then by

having the values log p j as the third row of W (scaled and rounded suitably),∑
j∈B log p j captures the reliability of the spanning tree B.

Clearly it can be difficult for a decision maker to balance these three competing objec-
tives. There are many issues to consider, such as the time horizon, repairability, fault
tolerance, etc. These issues can be built into a concrete f , for example a weighted
norm, or can be simply thought of as determining a black-box f .

Note that a complete graph on m + 1 vertices has n := m(m + 1)/2 edges but
(m + 1)m−1 spanning trees. If W has non-negative integer entries bounded by ω and
we have d criteria, then W (B) lies in the set of lattice points {0, 1, . . . , mω}d . So,
the number of possible W (B) to enumerate is at most (mω + 1)d , while brute-force
enumeration would require looking at all (m + 1)m−1 spanning trees. So that is our
goal: to cleverly enumerate these (mω + 1)d points, checking somehow which of
these really arise from a spanning tree, without directly enumerating the much larger
number of (m + 1)m−1 spanning trees. �	
Example 2 Minimum aberration model fitting. The problem is to find the “best” mul-
tivariate polynomial model to exactly fit a data set, using only monomials (in the input
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106 J. Gunnels et al.

“factors”) from some given set, that can be uniquely identified from any values of the
response variables. The total-degree vector of a polynomial model is a vector of the
total degrees of each of the factors (i.e., variables), over the monomials in the model.
“Best” can be with respect to any “aberration” function of the total-degree vector (see
[15,29]); for example, a simple polynomial model is typically defined to be one where
the chosen monomials have low degrees. In particular, we may choose to minimize
the norm of the total-degree vector, computed over monomials in the model.

In one application, we might consider clinical trials designed to determine an effect
on patients of various combinations of a small number of drugs. Each patient is given
a dose level of each drug. The number of patients and the dose levels are determined
by those conducting the trials. We wish to fit a mathematical model that will determine
the as-yet-unknown response levels of the patients (e.g., blood pressure). For concrete-
ness and because they are commonly used, we consider polynomial models, where the
possible monomials in the model come from some large but finite set. Each summand
in the model is a monomial with the variables standing for the levels of the various
drugs. To insure an exact fit, the number of monomials to choose corresponds to the
number of patients in the clinical trial. The response from the clinical trials determines
the precise model that is fit, through the constants in front of each monomial. We wish
to determine a relatively simple polynomial model (i.e., choice of monomials) that will
fit whatever responses we might eventually observe. This corresponds to minimizing
the aberration of the selected polynomial model.

We are given an m × d design matrix P of floating point numbers and an d × n
monomial degree matrix W (of small non-negative integers). Connecting this with the
description above:

d = number of factors (i.e., variables);
n = number of monomials to select from;
m = number of design points = number of monomials to select.

Each row pi,· of P is a design point, specifying a setting of the d factors. Each column
W·,i of W specifies the degrees of each factor in the monomial corresponding to that

column. That is, W·,i describes the monomial
∏d

k=1 x
Wk,i
k .

Let A be the m × n matrix defined by

ai, j :=
d∏

k=1

p
Wk, j
i,k , i = 1, . . . , m, j = 1, . . . , n.

A polynomial model

π(x) :=
∑

i∈B

ci

d∏

k=1

x
Wk,i
k

is determined by a set B ⊂ {1, 2, . . . , n} indexing some of the monomials. Let AB be
the submatrix of A comprising its columns with indices from B. The set B is identi-
fiable if AB z = y has a unique solution for all (“response vectors”) y (see [24], for
example). This is exactly the condition that is needed for there to be a unique choice
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High-performance computing for nonlinear combinatorial optimization 107

of the ci above so that π(pi ·) = yi , for i = 1, . . . , m, for every possible y. Typically
A has full row rank (and we do assume this for convenience), so B is identifiable if
and only if AB is square (m ×m) and det(AB) �= 0. Importantly, the set of identifiable
B is the set of bases of a (vectorial) matroid.

The total-degree vector of the model (indexed by) B is

x(B) :=
∑

i∈B

W·,i ∈ Z
d+.

The ultimate goal is to select an identifiable model that minimizes some function of
the total-degree vector. As there can be many reasonable functions f , we seek to enu-
merate the possible total-degree vectors. Our goal is to demonstrate that this can be
made practical even in situations when the number of identifiable models cannot be
practically enumerated.

We consider a concrete practical example which we use in our computational exper-
iments. For a positive integer ω, we look at the matrix W having all possible columns
of non-negative integers satisfying Wk,i ≤ ω. Such a matrix W has n = (ω + 1)d

columns. The number of potential identifiable models is then

(
n

m

)

=
(

(ω + 1)d

m

)

,

while the number of potential total-degree vectors is only

(mω + 1)d .

For example, with d = 2 (2-factor experiments), ω = 9 (maximum degree of 9 in
each monomial), we have that the number of monomials to choose from is n = 100. If
we have say m =28 (design points), then the number of potential identifiable models is
∼ 5.0×1024 while the number of potential total-degree vectors is only 64, 009 (many
potential models obviously must have the same total-degree vector). So we seek to
determine which of these total-degree vectors is realizable, without running through
all ∼ 5.0 × 1024 potential identifiable models. In this way, we can optimize any aber-
ration function over these at most 64, 009 total-degree vectors of identifiable models.
Note that we have in fact carried this out successfully (see Sect. 9). �	

The authors of [6] developed an algorithm for P based on matrix methods. That
algorithm was designed to be theoretically efficient, in the worst-case sense, when the
number of criteria d is fixed. Indeed, the problem is provably intractable when d is
not fixed. The dependence of their algorithm on d is exponential, so it can only be
practical for very small values, but this is often the case in applications.

Our goal was to implement their method on a massively parallel architecture by
exploiting efficient parallel implementations of algorithms for dense linear algebra. In
doing so, we hope to demonstrate that their algorithm is practical, on such an archi-
tecture, for a modest number of criteria d. Moreover, the base form of the algorithm is
relatively simple to implement and indeed parallelize, so there is yet another advantage
from the standpoint of practicality.
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108 J. Gunnels et al.

It is worth mentioning that a serial implementation of the algorithm using standard
floating-point arithmetic is not remotely practical. In particular, for problem instances
of interest, the algorithm requires the solution of Vandermonde systems of order in
the thousands. Such systems are inherently extremely ill-conditioned, and the state-
of-the-art for their solution on a serial machine in limited precision floating point is
well below our needs; indeed, solution of even an order-30 Vandermonde system is a
challenge, while we are considering systems that are 3–4 orders of magnitude larger.

Finally, we give one more example. The example does not strictly fit our framework.
Rather it fits in the broader framework of (vectorial) matroid intersection. Such prob-
lems greatly broaden the scope of applications, including statics, electrical networks,
etc. (see [20,25]). Nonetheless, a similar algorithm to the one we describe exists (see
[7]), and we plan to eventually implement it.

Example 3 Multi-criteria assignment problem. We are given m jobs that should be
assigned to m processors. Feasible assignments are encoded as the perfect matchings
in a bipartite graph. As is well known, the perfect matchings of a bipartite graph can
be viewed as the intersection of the sets of bases of a pair of (graphic, hence vectorial)
matroids.

3 The algorithm

We will not give a detailed justification for the basic algorithm in this paper—this can
be found in [6]—but we do give all details to fully specify it.

Let ω := max Wh, j (the maximum weight), let s−1 := mω (the maximum possible
entry in the W -image of a base), and let Z := {0, 1, . . . , mω}d .

Let X be the n ×n diagonal matrix whose j th diagonal component is the monomial
∏d

k=1 x
Wk, j
k in the variables x1, . . . , xd ; that is, the matrix of monomials defined by

X := diag

(
d∏

k=1

x
Wk,1
k , . . . ,

d∏

k=1

x
Wk,n
k

)

.

Let X (t) be the matrix obtained by substituting t sk−1
for xk , k = 1, 2, . . . , d, in X .

Thought of another way, we are simply evaluating each of the monomials (diagonal
elements of X ) at the point (t s0

, t s1
, . . . , t sd

) ∈ R
d .

for t = 1, 2, . . . , sd do
Compute det(AX (t)AT ) ;

end
Compute and return the unique solution gu , u ∈ Z , of the square linear

system:
∑

u∈Z t
∑d

k=1 uk sk−1
gu = det(AX (t)AT ), t = 1, 2, . . . , sd ;

Algorithm 1: The interpolation algorithm

For each potential W -image u, we have gu ≥ 0. In fact, gu = ∑
det2(AS), where

the sum is over the bases S having W -image u (see [6]). Therefore, gu > 0 if and only
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Fig. 1 Solution values

if u is the W -image of a base S. The trick is to compute each gu without explicitly
carrying out the sum, and that is what the algorithm does.

So, we have to make sd = (mω+1)d determinant calculations (to get the right-hand
sides), followed by a solve of a square system of sd = (mω + 1)d linear equations.

The optimal value of the nonlinear combinatorial optimization problem is just

min{ f (u) : u ∈ Z , gu > 0},

and for any given f : Z
d :→ R, we can scan through the u ∈ Z having gu > 0 to

find an optimal solution. So the main work is in identifying the u ∈ Z having gu > 0,
because such u are precisely the W -images of the bases.

Unfortunately the numbers in the algorithm can get extremely large, and this makes
working in double or even extended precision grossly insufficient. One possibility is to
try working in infinite or very high precision. We fabricated our own utilities, employ-
ing ARPREC (a C++/Fortran-90 arbitrary precision package; see [3]) in concert with
MPI. We note that working in very high precision is a growing trend in scientific
computation (see [4]).

In Fig. 1, we present a plot of solution values for one of our Vandermonde sys-
tems for a typical large example. Our variables are indexed by points in u ∈ Z :=
{0, 1, . . . , mw}d , and we number them conveniently as n(u) := 1 + ∑d

k=1 uksk−1.
For example, at the extremes, the point u = (0, 0, . . . , 0) gets numbered 1, and the
point u = (mw, mw, . . . , mw) gets numbered by (mw + 1)d = sd . So, in Fig. 1, we
have simply plotted the points (n(u), gu). It is easy to see that we have a very large
range of solution values, further justifying our use of high-precision arithmetic. It is
also interesting to note that the nonzeros are confined to a limited range of variable
indices—we will return to this fact and show how it can be exploited later.

As for the linear system solve, this is a Vandermonde system, therefore the num-
ber of arithmetic operations needed to solve it is quadratic in its dimensions (see
[17, Chap. 22], for example, which contains an excellent survey of numerical tech-
niques for solving Vandermonde systems). In fact, as we indicate in the next sec-
tion, we have chosen a very special Vandermonde system (successive powers of the
points 1, 2, . . . , sd ) which has a closed form inverse. Though there are approaches for
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110 J. Gunnels et al.

parallelizing a general Vandermonde system solve, we selected our particular Van-
dermonde system to have this relatively simple form because it enables an appealing
parallelization. Several extensions and enhancements to the basic algorithm are also
possible in the parallel realm; we will touch upon these later in the paper.

We remark that for other purposes, one may choose others points than 1, 2, . . . , sd

(e.g., Chebyshev points) to generate a Vandermonde system, when one uses such a
system to fit a polynomial. One driving concern can be the fit of a polynomial near the
extremes of a range. We emphasize that we are not really fitting a polynomial in the
typical sense—we have a particular polynomial implicitly defined, and we are seeking
an efficient manner to determine its nonzero coefficients.

4 A special Vandermonde inverse

Let N × N matrix V be defined by

Vi, j := j i−1, for 1 ≤ i, j ≤ N .

(in our application, we have N := sd ). We wish to solve a so-called “dual problem”
of the form

V T g = b,

simply by evaluating V −1 and letting g := V −T b. We apply this directly to the task
of solving the linear system in the algorithm of the last section.

Our Vandermonde matrix is chosen to be a very special one. As such, it even has a
closed form for the inverse V −1:

V −1
i, j :=

⎧
⎪⎨

⎪⎩

(−1)i+N 1
(i−1)!(N−i)! , j = N ;

i V −1
i, j+1 +

[
N + 1
j + 1

]

V −1
i,N , 1 ≤ j < N ,

where

[
N + 1
j + 1

]

denotes a Stirling number of the first kind (see [13,14], though they

define things slightly differently there). The form for V −1
i, j indicates how each row of

V −1 can be calculated independently, with individual entries calculated from right to
left, albeit with the use of Stirling numbers of the first kind. We note that the Stirling
number used for V −1

i, j does not depend on the row i , so the needed number can be
computed once for each column j . The (signed) Stirling numbers of the first kind can
be calculated in a “triangular manner” as follows (see [26]). For −1 ≤ j ≤ N , we
have

[
N + 1
j + 1

]

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, N ≥ 0, j = −1 ;
1, N ≥ −1, j = N ;
[

N
j

]

− N

[
N

j + 1

]

, N > j ≥ −1.
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We remark that a Matlab code to calculate our desired Vandermonde inverse is avail-
able as VanInverse.m (see [28]), and a C code to calculate Stirling numbers of the
first kind is available as mStirling.c (see [21]). Of course, we could not work with
the Stirling numbers in double precision or long ints—even for the smallest problem
that we consider (N = 1,369), we encounter Stirling numbers of magnitude around
103,700.

5 Limiting the range

From a completely naïve standpoint, it might appear that every variable gu , u ∈ Z :=
{0, 1, . . . , mω}d , could be positive (i.e., nonzero) in the solution. But the plot of Fig. 1
indicates otherwise. A simple idea is to try to narrow the range for which variables
could be positive. Recall that our variables are numbered 1, 2, . . . , (mω + 1)d = sd ,
according to the map n(u) := 1 + ∑d

k=1 uksk−1, for u ∈ Z .
Notice for example that u = (0, 0, . . . , 0) and u = (mω, mω, . . . , mω) are typi-

cally not achievable by adding up m > 1 distinct columns of W (after all, W itself
often has distinct columns). Rather than continue in this direction with combinato-
rial reasoning, we cast the problem of determining the minimum and maximum n(u)

for which gu > 0 as a pair of optimization problems. We will see that this pair of
optimization problems can be solved very easily.

Let

Imin := 1 + min (cW )y,

subject to
det(Ay) �= 0;
eT y = m ;
y ∈ {0, 1}n,

where c := (s0, s1, . . . , sd−1), and Ay is the matrix comprising the m columns of the
m × n matrix A indicated by the vector y of binary variables.

This is a linear-objective matroid-base optimization problem. As such, it is exactly
solvable by, for example, the well-known greedy algorithm (see [19] for example).
We simply select variables to include into the solution, in a greedy manner, starting
from the minimum objective-coefficient value (cW )i , working up through the greater
values. We only include the i th column A·,i of A in the solution (i.e., set yi = 1) if
the columns from A already selected, together with A·,i , are linearly independent. We
stop once we get m columns.

We define and calculate Imax similarly. We simply replace min with max in the
definition, and in the greedy algorithm we start with maximum objective-coefficient
value (cW )i , working down through the lesser values.

Note that this can be done with no numerical difficulties. We only use the objective
vector cW above to order the variables. The linear algebra (mentioned above) only
involves the matrix A (which has modest coefficients). Moreover, we do not need to
even explicitly form the objective vector cW ; we just observe that this vector lexi-
cally orders the columns of W , and so in the greedy algorithm for determining Imin
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112 J. Gunnels et al.

(respectively, Imax), we simply choose index i before i ′ (1 ≤ i, i ′ ≤ n) if W·,i is
lexically less (respectively, greater) than W·,i ′ .

Finally, referring back to the last section where we represented our sought after
solution as g := V −T b, it is easy to see that armed with the values Imin and Imax,
we only need take the dot product of rows numbered between Imin and Imax with the
right-hand side b, as all other dot products would be zero. In particular, we do not
need all columns of V −1. As columns of V −1 are calculated from right to left, we can
halt that computation once we have the column numbered Imin.

We can do better in regard to exploiting the calculation of Imin and Imax. We can
reduce our matrix work to an equivalent dual Vandermonde system, albeit with a rel-
atively larger right-hand side, for which N is only Ñ := Imax − Imin + 1. We simply
view our dual Vandermonde system V T g = b in block form:

and in this form the non-zero part of g, namely g̃, satisfies Ṽ T g̃ = b̃. This system has
order Ñ . Moreover, it is very close to being in the form of the special dual Vandermonde
systems that we have been considering.

We can see that V T
i, j = i j−1, for 1 ≤ i, j ≤ N , implies that

Ṽ T
i, j = V T

i, j+Imin−1 = i j+Imin−2.

Let

D := diag j=1,...,Ñ

(
j−Imin+1).

Then

(
DṼ T )

i, j = i j−1, for 1 ≤ i, j ≤ Ñ .

That is, DṼ T is an order-Ñ transposed Vandermonde matrix of the type that we have
been looking at, and so the system that we now need to solve, namely

(
DṼ T )

g̃ = (
Db̃

)
,

is just an order-Ñ version of what we have been looking at. The only difference is that
we scale the right-hand side elements appropriately.

Note that because DṼ T is a transposed Vandermonde matrix, the associated system
has a unique solution, and so the choice of which Ñ rows we work with (we chose
the first Ñ rows) is irrelevant. However, by working with the first Ñ rows, DṼ T is
a transposed Vandermonde matrix of the special form that we have been considering
(i.e., the columns are the successive powers of the natural numbers 1, . . . , Ñ ), and
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so we have the nice form and methodology for working with its inverse that we have
discussed.

6 Generation of the right-hand side

In this section, we clarify how the right-hand side of our linear system is generated.
As described in the last line of the algorithm (Sect. 3), the right-hand side elements are
det(AX (t)AT ), for t = 1, . . . , sd . The matrix X is a diagonal matrix of monomials
described as follows:

X j j :=
d∏

k=1

x
β j,k
k .

The monomials are in d variables. A given X is evaluated at a point t by substituting
t sk−1

for the variable xk , with k ranging from 1 to d, in each of the monomials. Thus,
when det(AX (t)AT ) is evaluated, X is no longer a diagonal matrix of monomials;
rather, it is a diagonal matrix of real numbers corresponding to the evaluations of each
of the monomials in X at a point (t s0

, t s1
, . . . , t sd−1

) ∈ R
d . There are sd points that

we evaluate in this manner, as t iterates from 1 through sd , each leading to one of
the sd right-hand side elements. It is easy to see that when t = sd , we have X (sd)

containing an entry at least as large as sd raised to the sd−1 power. These numbers
quickly become too large to permit solving the linear system with reasonable accuracy,
even with very high precision. Thus, we scale our Vandermonde system to keep the
size of the values in X (t) bounded by unity.

7 Parallel implementation

Now we will consider how the algorithm described above is currently implemented as
it targets the IBM Shaheen Blue Gene/P supercomputer at IBM’s T.J. Watson Research
Center. The current implementation uses a one-dimensional data decomposition and a
few algorithmic wrinkles that allow the code to run with a data footprint that might be
smaller than expected. Here, let us consider the most straightforward implementation
and motivate some of our implementation decisions.

First, let us consider the generation of the right-hand side (or right-hand sides)
for the systems V T g = b that we wish to solve. As a brief aside, it is important to
remember that we will not be performing a factorization and backsolve, but an explicit
V −T b calculation; the distinction will be an important one.

In Sect. 6, the mathematical definition of the right-hand side components was given.
From the point of view of a parallel implementation, generating them is a simple pro-
cess. First, A is generated (identically) on all nodes in the processor grid. Next, the X (t)
are generated, based on the processor number. For example, if sd is 10,000 and there
are 1,000 processors, X (1) might be generated on processor #1, along with X (1001),
X (2001), etc. Then for each t , the matrix AX (t)AT is computed, its Cholesky factor
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derived, and the diagonal elements of the Cholesky factor squared and multiplied in
order to calculate the right-hand side entry det(AX (t)AT ).

Because we are, essentially, doing an explicit formation of V −T , it is logical (and
efficient) to form the i th element of the right-hand side on the processor that will
contain the i th column of the matrix V −T . At the end of this embarrassingly parallel
phase, the right-hand side is formed, distributed (and nowhere duplicated) over the
entire processing grid. Thus, we form the contributions to the matrix vector product
without any further communication of the components of the right-hand side.

The next step is the formation of the list of the Stirling numbers of the first kind. In

order to form row N + 1 of the Stirling numbers, that is

[
N + 1
j + 1

]

for −1 ≤ j ≤ N ,

we have taken advantage of the fact that these values can be computed with a Pascal’s
Triangle approach. Thus, in the first step only one processor is busy, in the second step
two processors are calculating, etc., up to the number of processors in the machine
or the Stirling row of interest, whichever is less. In a one-dimensional setting, this
sub-problem can be viewed as a simple systolic shift. In step r , processor p, computes

the Stirling number

[
r
p

]

, having received

[
r − 1
p − 1

]

from processor p − 1 and having

sent

[
r − 1

p

]

to processor p + 1 in the previous round. The performance-degrading

“ripple-effect” is easily avoided by a two stage send/receive (processors of even rank),
receive/send (processors of odd rank) process which is only slightly complicated by
the fact that we have to consider the instance when the cardinality of the Stirling
numbers exceed the number of processors.

The manner in which this step of the implementation is performed is independent of
the other steps in the process as, even in the most naïve implementation, an Allgather
(collect) phase can provide all processors with the entire list of Stirling numbers. This
is of interest because, as we will later describe, memory parsimony may become a
concern as the size of the problems and corresponding precision required increases.
During the Stirling computation, which can be performed even before the formation
of the right-hand sides (or off-line and loaded from disk), the only memory required
is that which holds the Stirling vector. We will address this issue in Sect. 7.2 when
we consider some alternate design choices. For now, let us suppose that the Stirling
numbers are generated by mapping a one-dimensional, self-avoiding walk (placing
processors 0 and P − 1 next to each other) onto the three-dimensional Blue Gene
machine, and let us further suppose, for the sake of specificity, that every processor
has a copy of the entire list of Stirling values.

Given that the Stirling numbers are locally available, computing V −T , by column,
is quite straightforward. Again, let us view the columns in a one-dimensional cyclic
distribution over the processor grid (array). For any given column we only need to
compute (see the equations in Sect. 4) V −1

i,N then, using this value and the list of Stirling
numbers, we sequentially compute the inverse of the values for the remainder of the
column.

Once the inverse has been computed for all columns held by a processor, a sim-
ple scalar × vector calculation, using the corresponding right-hand side entry (local)
yields a given processor’s contribution to the solution vector. At this point, a reduction
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(add) operation yields the overall solution vector. While we do not address the use of
multiple right-hand-sides in any depth in this paper, it should be apparent to the reader
that the extension is straightforward, if slightly more memory-hungry, and we present
a topical treatment of the issues involved in that domain.

7.1 Why ARPREC?

Initially, our goal was to use the rigorously tested and widely available LAPACK and
ScaLAPACK libraries to solve for our generated right-hand sides. However, it turns
out that for matrices of the type under consideration here, even a 9×9 matrix solve was
not possible using LAPACK and standard double-precision arithmetic. We considered
using iterative refinement methods [8] and, perhaps quad-precision arithmetic, but the
25×25 matrix (our next larger example) did not appear likely to yield to that approach.
Because our goal was to work with instances of the problem that are larger by several
orders of magnitude, we chose not to use Gaussian elimination and iterative refine-
ment, but the explicit formation of the inverse of the matrix using very high precision
arithmetic. The ARPREC package met our needs exactly, as it was written in C++,
well-documented, and heavily tested. Since we began this project, there have been a
number of studies regarding the possibility of bringing ARPREC-style functionality
to LAPACK/ScaLAPACK (see [12] for instance). However, at the limits of memory
consumption, it seems that it would not be easy to implement our methodology in the
ScaLAPACK framework.

Because we are using an unusual approach (and not the one we first intended to
pursue), the next subsection is included to (partially) justify the path we chose.

7.1.1 The intractable numerics of small problems

We performed some experiments with Vandermonde matrices coming from our appli-
cation, but of very modest size. Our goal was to try to see the numerical limitations of
even small examples. In Table 1, “N” indicates the order of the Vandermonde matrix,
and “prec” indicates the number of digits of precision.

We took the design matrices P in these examples to consist of very small integer
entries. With integer entries, it is easy to argue that the solution of our Vandermonde
system should be all integer.

The “y” and “n” entries in the table signify either yes, the solution was proba-
bly valid (meaning all solution values were exact integers and no solution value was
negative) at that particular numerical precision, or no, the solution was numerically
unstable. The sample zero is an example of the kind of “zero” seen at that particular
numerical precision. The table increases by order of precision, and displays the lowest
digits of precision for which the solution was numerically stable. For example, on the
25 × 25 example, the “no scaling” option did not work at 29 digits of precision, but
it did work at 30 digits of precision. One further side comment: although we indicate
that the 25 × 25 example works with the “scaling” option (see last line of Sect. 6) at
16 digits of precision, one of the entries was 1.00372, which we accept as numerically
stable. This entry remained at this accuracy until the 30 digits of precision test, at
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Table 1 Intractable numerics

N Prec Scaling Sample Scaling Sample
on zero off zero

25 10 n n/a n n/a

25 15 n n/a n n/a

25 16 y −2.05918 × 10−18 n n/a

25 25 y −2.05918 × 10−18 n n/a

25 30 y −2.05918 × 10−18 y 3.16422 × 10−12

32 15 n n/a n n/a

32 16 y −3.47723 × 10−14 n n/a

32 30 y −5.398 × 10−27 y −6.71336 × 10−12

Table 2 Precision required to
obtain a largest negative value
less than 0.001 in magnitude

N Precision Sample zero LSF (N, Precision)

361 319 −1.70998 × 10−33 0.883657

1,369 1,215 −2.8173 × 10−6 0.887259

2,116 1,894 −1.28999 × 10−11 0.892665

3,025 2,704 −1.00963 × 10−4 0.893379

4,096 3,672 −2.52884 × 10−9 0.894986

5,329 4,755 −4.66493 × 10−6 0.893726

6,724 5,882 −1.03724 × 10−13 0.885654

8,281 7,255 −1.04402 × 10−11 0.881897

which point it became exactly 1. As mentioned before, all other solutions contained
exact integers.

In general, it has been our observation that the number of digits of precision
required for an acceptable answer has a linear relationship with the dimension of the
matrix being implicitly inverted. We have come to this conclusion experimentally (see
Table 2) where the least squares fit in the fourth column shows a great deal of stability
as larger values of N are evaluated. Because the solution of our Vandermonde system
is non-negative (see the discussion after Algorithm 3), any solution that has negative
entries clearly indicates numerical difficulties and a need to increase the precision. Fur-
thermore, we have cross-validated our results against a completely different effective
heuristic approach to the basic multi-objective nonlinear combinatorial optimization
problem (see [11]), so we have further evidence to check that we have used sufficient
precision. Probably the numbers of digits that we find suffice is well below what theo-
retical estimates would require. We leave a detailed analytical error analysis to others
as future work.

7.2 Implementation challenges and solutions

While the implementation outlined in Sect. 7 allows us to handle matrices of unprec-
edented size (in this sub-field), there are some limitations to that approach. These
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issues stem from three areas: memory consumed, time-to-solution, and scale-down
to smaller processor configurations. In this section we will discuss the next steps in
refining our implementation and how we are addressing each of these issues.

Recall that there are five phases to this computation.

(1) The generation of the right-hand sides.
(2) Computation of the Stirling values of the first kind.
(3) Computation of V −T .
(4) Computation of V −T b locally (where b is a single right-hand side).
(5) Reduction of the local contributions computed in (4) for the solution vector.

While some of these steps can be interchanged, we will address them in the indicated
order.

7.2.1 Generation of the right-hand sides: revisited

As has been mentioned, the generation of the right-hand sides was viewed as embar-
rassingly parallel. However, when we confront the scaling challenge, we need to
consider issues related to space requirements. As the problem size grows, a single
processor’s memory will prove insufficient to the task of storing the matrices required
for the creation of the right-hand sides. As that occurs, it is possible to store these
matrices across a 2 × 2 subgrid of processors in a (small) block-cyclic fashion. In this
manner, the right-hand sides can be generated on the subgrids and moved within those
subgrids to the appropriate location. Because the right-hand side points generated will
“stack up” (i.e. consume memory) this can be extended to 4 × 4 grids at a slight cost in
generation time. After the right-hand sides are generated, these matrices are no longer
required and the memory can be reclaimed.

The formation of the right-hand sides is a matter of matrix–vector and matrix–matrix
multiplication (albeit in extremely high-precision), followed by a high-precision
Cholesky factorization. The techniques required to get superb scaling in this arena are
well-understood [10,27], and the underlying data distribution (block-cyclic) allows
us to deal with memory limitations and load imbalances quite easily. The only poten-
tial issue is the multiple ongoing subcommunicator collectives, but this avenue has
been exercised in the target architecture before, and performance has been admirable.
Because we are not restricting ourselves to Blue Gene, however, it is possible that we
will have to address this issue more thoroughly in the future.

7.2.2 Generating Stirling numbers of the first kind: revisited

Generating Stirling numbers, in the manner of forming Pascal’s triangle, is a well-
understood process. Every processor receives one value, computes one value (an
extended precision multiply and add), and sends one value at every step of the algo-
rithm in which they are active. In the example of interest here, every processor is
responsible for a single “column” of the vector of Stirling numbers.

The formula in Sect. 4 makes it apparent that only two values are needed to compute
the “next” Stirling number and we will leverage this. As we describe the later steps,
we will address how these values need to be communicated across the machine.
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7.3 Computing V −T b: revisited (steps 3–5)

As we determine how to approach truly large problems in this domain, we must
consider different data distributions and methods for staging the computations. In
this section, we will list the alternatives that are typically used in traditional high-
performance computing and give a topical treatment of some of the problems with
these approaches. In the next section we will give a more detailed explanation of the
approach selected. A somewhat similar design space was examined in-depth by Bailey
and Borwein [5] in the context of high-precision numerical integration.

First, a partial list of the potential approaches that one might take in this domain.

(1) One-dimensional column-based distribution: Unstaggered or Staggered.
(2) Two-dimensional (blocked) distribution: Staggered.
(3) Two-dimensional (blocked) distribution: “Row-twisted.” Unstaggered.

The one-dimensional, column-based distribution is the simple one previously
described. An entire column of V −T will “live” on a given processor. This is obvi-
ously impractical if we separate steps (3–5) of the process described above as it would
require an impractical amount of storage space.

This difficulty may not seem amenable to any solutions involving data distribution.
The problem is that no processor has enough memory to hold its own contribution to
the global solution vector, and because the global size of the matrix does not change
with data distribution, this path might appear that we are at an impasse.

However, while every processor computes the same number of values as in the
one-dimensional approach, they do not compute the same contribution to a given col-
umn. Recall that elements of V −T must be computed serially within a given column,
but every column is independent of the other columns being computed. Assume that
N = P × Q. In the P × Q processor configuration, every processor in a given col-
umn of the processor mesh must hold not N elements of a given column, but N/P
(R) elements of that column and is responsible for computing Q (sub-)columns. The
distinction is important because in this instance the Q sub-columns do not have to
co-reside in memory. The cost of this solution is one of lag time. The computation is,
as has been mentioned, serial in a column. Thus, the first processor row must complete
(in parallel) computation of the first R elements of the first column (in their respective
solution spaces) before the second row of processors is active, etc.

7.4 (Further) Conflating procedural steps

When we interleave steps (3–5), we will see that the problems associated with mem-
ory issues, mentioned above, largely disappear. Here we describe how these issues are
dealt with, additional penalties incurred (if any), and additional algorithmic variants
that would allow for further scaling (of problem and machine size) and would be
performance portable to other systems (systems without Blue Gene/P’s fast collec-
tive networks). Fortunately, in this instance, the solution is not overly complex. The
data distribution is simple, the added coordination cost is not onerous, and the solution
scales (both up and down) quite well. Memory parsimony can be traded for algorithmic
efficiency in a straightforward manner.
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At this point, let us take a half-step towards the interleaving more fully explored
in the next subsection. Once we compute a partial column (R elements) of V −T , one
could multiply the result by the corresponding right-hand side (element) and reduce
the result. Thus it would appear that what is needed in this case is far less memory per
processor at any one time:

1. R elements of the V −T matrix,
2. R elements of the Stirling vector,
3. R elements of the local contribution to the right-hand side, and
4. At least one element of the overall (reduced) solution

As shown in Sect. 4, in order to compute any element of V −T , one requires only the
value V −T

i,N , the previous entry in that column, and the corresponding Stirling value.

Thus, only three elements of a given columns of V −T are required at any point in
time on a given processor. It is this property of the Vandermonde system that makes
both the one-dimensional and the “block-skewed” algorithms possibilities, as, if the
entire column were required to compute the next value of the inverse, only the two-
dimensional approach (or a one-dimensional approach where a single column resides
on the processor set) would be practical.

The astute reader will no doubt have noticed that the staggered, “block-skewed”
algorithm, has no real advantage over a one-dimensional solution, save for purposes
of exposition. In fact, the two-dimensional distribution requires one additional com-
munication to one’s neighbor (so that the neighbor can continue computation on the
column of V −T ) per R computations. Thus, the simplest approach may well be the
best here. One simply views the 2D mesh as one dimensional, and whereas, previously,
processor #1 would have had the first R elements for matrix column #1, the second
R elements of matrix column #2, etc., we can simplify things. In the one-dimensional
setting, one can compute in R blocks and save the value needed to continue with the
next R elements while performing a distributed reduce, always working on the same
column of the matrix. Thus, we will restrict our focus to the one-dimensional scheme
wherein each processor is responsible for a single column in the motivating exam-
ple. As has been mentioned, column formation is independent and having a single
processor compute several columns presents no additional challenges. This also adds
flexibility in choosing R, the “chunk size”. In the one-dimensional setting, the previous
definition of R (=P/Q) is no longer motivated (in the two-dimensional setting, it was
a natural level of granularity), and we can choose R so as to optimize the efficiency
of the algorithm (as large as possible, without overflowing available memory).

The apparent problem is that one cannot duplicate the Stirling vector on all proces-
sors (it is prohibitively large). The simplest (but quite inefficient) solution to this prob-
lem is to stagger the computations (intersperse Stirling computation with inversion).

However, because every processor requires the Stirling number

[
N
j

]

to compute the

N th entry in the column, one could compute the entire Stirling vector, leave the vector
distributed, and use a systolic shift to move the Stirling vector around the (embedded)
ring of processors. This precisely coincides with the bubbling up (or down, depend-
ing on your view) of the V −T values and a similar shift operation for the distributed
summation of the matrix–vector product. Instead of a systolic shift, the stagger could
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be eliminated via a broadcast at each step of the process. Both of these do incur a
communications overhead, but it appears to be minimal on the Blue Gene/P system.
The punctuated broadcast having the advantage of achieving greater bandwidth (link
utilization) and avoiding the start-up latency associated with the systolic shift (the
calculation cannot begin until the first Stirling value arrives, requiring a number of
shifts equal to the processor count in the worst case).

When considering the distribution scheme solutions discussed in the previous sec-
tion through the lens of memory parsimony there is little to add. We require only a
few (three) values from the V −T matrix at any given time. We can tune the number
of Stirling values required on any process by distributing the collection across every
processor row and doing periodic collects. This value does not have to be the same as
the number of contributions to the matrix–vector product that are collected before a
distributed reduce; the two can be adjusted independently. This allows an easily tuned
trade between communication efficiency and memory consumed.

8 Extreme scale

Unsurprisingly, as we consider what is required to scale up to huge matrices, processor
counts, and digits of precision (simultaneously), the algorithms we plan to use become
more involved and, at extreme scale (wherein each processor can only hold the seven
requisite values: the three values to compute the next element of the inverse, a Stirling
value for global consumption, a single entry of the reduced matrix–vector product,
the element of the right-hand-side used by this column of the matrix to produce the
matrix–vector product, and the current contribution to the matrix–vector product),
the operation is appreciably more expensive in terms of communications overhead
incurred.

In the previous sections we have described, at some length, how one can use the
non-local memory of the machine as a shared cache of sorts and how Blue Gene’s
highly efficient collective operations, as embodied in MPI, make this an attractive
option. We are examining how this might be used for other applications in this space.
We have also designed a simple checkpointing infrastructure for the high-precision
values so as to facilitate solution of a very large problem on limited resources. Because
the execution of this algorithm might take several days on a single rack (1,024 nodes)
of Blue Gene/P, checkpointing, of a very simple form, would have to be added to
the code as we would likely not get such a dedicated resource for several consecutive
days. On a less reliable system, the same checkpointing infrastructure could be used to
address faults in the same manner (where more frequent saves to non-volatile memory
would be needed). If one carefully times when the checkpointing occurs (for example,
immediately after a reduction), very little data per processor needs to be stored.

8.1 Multiple right-hand sides

Multiple right-hand sides present some unusual difficulties in this context. Generally,
additional right-hand sides are not heavily factored into storage considerations. Here,
they are one of the few persistent pieces of storage that we have to work around.
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As the number of right-hand sides increases, while we can store them in a distrib-
uted fashion, we have to hold them all in the system simultaneously (else we must
recompute the columns of V −T ). The problem here is not only the right-hand sides,
but the buffers for the summand V −T components which are each R elements in size.
While it is straightforward to shrink them (reduce R), this will cause inefficiency in
the communications of the reduction (as soon as the size of that array drops below the
number of processors). The simplest solution, one that costs little in terms of perfor-
mance, is to simply reduce one right-hand side at a time and reuse the storage. This,
of course, requires us to store the column of V −T as well as the vector to be reduced
instead of reusing this storage space. Still, because this cost is only twice the storage
for one component, no matter how many right-hand-sides are involved, the solution
is practical for some problem instances.

9 Experiments

The Blue Gene/P supercomputer [18] is the second-generation incarnation of the Blue
Gene computer series. Several papers detailing the architecture have been published
(for example [1,2,9]). Only a few of the many features of this architecture are central
to our algorithmic embodiment however. Blue Gene/P contains, among other net-
works, a three-dimensional torus interconnect. Each link is capable of sending or
receiving data at 0.44 Bytes/cycle per link (thus, higher-dimensional broadcasts and
one-to-many communications can proceed at greater than single-link speed) and col-
lectives, available for use through the pervasive MPI interface, are highly tuned to
take advantage of Blue Gene’s architectural capabilities. In essence, this means that
both nearest neighbor communications and one-to-many communications are highly
efficient primitives upon which an application can be based.

At the individual node level, the Blue Gene/P system that we used had 4 GB of
memory shared between four SIMD-FPU-enhanced 450 PPC cores. While these cores
each run at 850 MHz, they are capable of SIMD FMAs (Floating point Multiply-Adds),
so that each is in fact able to reach 3.4 GF/core or 13.6 GF/node.

The largest problem that we computed with has N = sd = 64,009; a more detailed
description of that instance is in Example 2 of Sect. 2. We were able to solve this
instance in about 15 h using just 2 Blue Gene/P racks (2,048 nodes). We estimate that
brute-force enumeration of all potential bases, together with checking which are in
fact bases, would require over 75,000 years using petaflop-class machines such as the
ORNL-Jaguar and LANL-Roadrunner supercomputers.

We present additional computational results in Tables 3, 4. Table 3 indicates that
we can scale up to large problems rather efficiently. Table 4 indicates that we do not
lose substantial machine utilization as we go to higher precisions.

Furthermore, we solved a N ≈32K problem on 8 Blue Gene/P racks (8,192 nodes),
using a version of the code that set the collection vector sizes quite conservatively
(which degrades performance slightly) and achieved 5.3 TF. Stepping to an order-
280K matrix on a 1.0-PF 72-rack BG/P system, should yield 45–55 TF. (Note that
such a problem corresponds, for example, to a an instance of Example 2 having d =
2, ω = 9, n = 100 and m = 59).
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Table 3 Performance on 4,096 cores of the Blue Gene/P Supercomputer for various matrix sizes at a fixed
level of precision

d ω n m
(n
m
)

N Prec Time

2 9 100 4 3.92123 × 106 1,369 32,000 106.239

2 9 100 5 7.52875 × 107 2,116 32,000 139.232

2 9 100 6 1.19205 × 109 3,025 32,000 178.511

2 9 100 7 1.60076 × 1010 4,096 32,000 224.556

2 9 100 8 1.86088 × 1011 5,329 32,000 550.641

2 9 100 9 1.90223 × 1012 6,724 32,000 673.805

2 9 100 10 1.73103 × 1013 8,281 32,000 1203.76

2 9 100 11 1.41630 × 1014 10,000 32,000 1446.43

2 9 100 12 1.05042 × 1015 11,881 32,000 1690.77

2 9 100 13 7.11054 × 1015 13,924 32,000 2628.13

2 9 100 14 4.41869 × 1016 16,129 32,000 3021.44

Time to solution is essentially a constant × the number of columns solved × the length of the columns

Table 4 Performance on 4,096
cores of the Blue Gene/P
Supercomputer for a fixed
matrix size at different levels of
precision

The percentage of peak achieved
does not remain constant, but the
variation appears to dampen at
very high precision levels

N Prec % Peak GF Time (s)

4,096 2,000 4.262 593.477 12.171

4,096 4,000 4.849 675.270 26.102

4,096 8,000 5.071 706.846 52.043

4096 16,000 5.361 746.635 100.702

4,096 32,000 5.037 701.416 225.110

4,096 64,000 4.904 682.891 489.081

4,096 128,000 5.153 717.579 972.900

10 Conclusions

We have demonstrated that efficient high-performance linear-algebra based algo-
rithms, implemented on high-performance supercomputers, can be successfully
applied to a domain (nonlinear combinatorial optimization) where such algorithms
looked to be completely impractical. We hoped that this is just a first step in seeing
more impact of matrix methods and supercomputing in discrete optimization.

As petascale and exascale systems are realized, we believe that methods such as
those used here for memory conservation, in concert with high-precision arithmetic,
will need to be explored. We hope that we have made some small contribution to such
an effort.
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