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Abstract

Systems of polynomial equations with coefficients over a field K can be used to concisely model
combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-
colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solu-
tion over the algebraic closure of the field K. In this paper, we investigate an algorithm aimed at
proving combinatorial infeasibility based on the observed low degree of Hilbert’s Nullstellensatz
certificates for polynomial systems arising in combinatorics, and based on fast large-scale linear-
algebra computations over K. We also describe several mathematical ideas for optimizing our
algorithm, such as using alternative forms of the Nullstellensatz for computation, adding care-
fully constructed polynomials to our system, branching and exploiting symmetry. We report on
experiments based on the problem of proving the non-3-colorability of graphs. We successfully
solved graph instances with almost two thousand nodes and tens of thousands of edges.

Key words: combinatorics, systems of polynomials, feasibility, Non-linear Optimization,
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1. Introduction

It is well known that systems of polynomial equations over a field can yield compact models
of difficult combinatorial problems. For example, it was first noted by D. Bayer that the 3-
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colorability of graphs can be modeled via a system of polynomial equations [2]. More generally,
one can easily prove the following lemma:

Lemma 1.1. A graph G is k-colorable if and only if the system of n + m equations in n variables
xk

i − 1 = 0,∀i ∈ V(G), and
∑k−1

l=0 xk−1−l
i xl

j = 0,∀{i, j} ∈ E(G) has a complex solution. Moreover,
the number of solutions equals the number of distinct k-colorings multiplied by k!.

Although such polynomial system encodings have been used to prove combinatorial results
(see [1, 10] and the references therein), they have not been widely used for computation. The key
issue that we investigate here is the use of such polynomial systems to effectively decide whether
a graph, or other combinatorial structure, has a property captured by the polynomial system
and its associated ideal. We call this the combinatorial feasibility problem. We are particularly
interested in whether this can be accomplished in practice for large combinatorial structures such
as graphs with many nodes.

Certainly, using standard tools in computational algebra such as Gröbner bases, one can
answer the combinatorial feasibility problem by simply solving the system of polynomials. Nev-
ertheless, it has been shown by experiments that current Gröbner bases implementations often
cannot directly solve polynomial systems with hundreds of polynomials. This paper proposes
another approach that relies instead on the nice low degree of the Hilbert’s Nullstellensatz for
combinatorial polynomial systems and on large-scale linear-algebra computation.

For a hard combinatorial problem (e.g., 3-colorability of graphs), we associate a system
of polynomial equations J = { f1(x) = 0, . . . , fs(x) = 0} such that the system J has a solution
if and only if the combinatorial problem has a feasible solution. The Hilbert Nullstellensatz
(see e.g.,[7]) states that the system of polynomial equations with coefficients over a field K has
no solution over its algebraically-closure K̄ if and only if there exist polynomials β1, . . . , βs ∈
K[x1, . . . , xn] such that 1 =

∑
βi fi. Thus, if the polynomial system J has no solution, then there

exists a certificate that J has no solution, and thus a proof that the combinatorial problem is
infeasible.

The key idea that we explore in this article is to use the Nullstellensatz to generate a finite
sequence of linear algebra systems, of increasing size, which will eventually become feasible
if and only if the combinatorial problem is infeasible. Roughly speaking, given a system of
polynomial equations, we fix a tentative degree d for the certificate meaning deg(βi fi) = d for
every i = 1, ..., s. Then, we can decide whether there is a Nullstellensatz certificate of degree d
by solving a system of linear equations over the field K whose variables are in bijection with the
coefficients of the monomials of the polynomials β1, . . . , βs. If this linear system has a solution,
we have found a certificate; otherwise, we try a higher degree for the certificate. This process
is guaranteed to terminate because, for a Nullstellensatz certificate to exist, the degrees of the
certificate cannot be more than known bounds (see e.g., [16] and references therein). We explain
the details of the algorithm, which we call NulLA, in Section 2.

Our method can be seen as a general-field variation of recent exciting work by Lasserre [17],
Laurent [18], Parrilo [26] and many others, who studied the problem of minimizing a general
polynomial function f (x) over a real algebraic variety with finitely many points. Laurent proved
that when the variety consists of the solutions of a zero-dimensional ideal I, one can set up the
optimization problem min{ f (x) : x ∈ variety(I)} as a finite sequence of semidefinite programs
terminating with the optimal solution (see [18]). In our case, we only desire to decide com-
binatorial feasibility (e.g., is this graph 3-colorable?), thus there are two key observations that
speed up practical calculations considerably: (1) when dealing with feasibility, instead of op-
timization, linear algebra replaces semidefinite programming and (2) there are many ways of
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controlling the size of the sequence of linear-algebra systems. We discuss details of a variety of
mathematical ideas for controlling the size of the sequence in Section 3. These ideas include the
following: computing over finite fields instead of over the reals, designing carefully-constructed
polynomials that can actually decrease the length of the sequence in some cases, exploring alter-
native forms of Hilbert’s Nullstellensatz more suitable for computation in a particular instance,
branching to create polynomial subsystems with smaller sequences of linear-algebra systems,
and exploiting symmetries in the linear system. These ideas are new developments or extensions
of the ideas presented in our previous paper [11].

Our algorithm has very good practical performance and numerical stability. Although known
theoretical bounds for degrees of the Nullstellensatz coefficients are doubly exponential in the
size of the polynomial system (and indeed there exist pathological examples that attain such
a large bound and make NulLA useless in general), our experiments demonstrate that very
low degrees suffice for systems of polynomials coming from graph theory, even for very large
graphs. We have implemented an exact-arithmetic linear system solver optimized for these
Nullstellensatz-based systems. We performed many experiments using NulLA, focusing on the
problem of deciding graph 3-colorability (note nevertheless that the method presented here is
applicable to any combinatorial problem for which a polynomial system encoding is known).
We conclude with a report on these experiments in Section 4.

2. Nullstellensatz Linear Algebra (NulLA) Algorithm

We start by recalling Hilbert’s Nullstellensatz in the traditional statement found in most text-
books (for a proof see e.g., [7]): A system of polynomial equations f1(x) = 0, . . . , fs(x) = 0,
where fi ∈ K[x1, . . . , xn] and K is an algebraically closed field, has no solution in Kn if and only
if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =

∑
βi fi.

In this paper, we will use a slightly stronger form that is much more useful for our purposes
and can be easily derived from the classical statement above. This stronger form allows us to
perform calculations over any field K even if K is not algebraically closed.

Lemma 2.1. Let K be a field and K its algebraic closure. Given f1, f2, . . . , fs ∈ K[x1, . . . , xn],
the system of polynomial equations f1(x) = 0, . . . , fs(x) = 0, with fi ∈ K[x1, . . . , xn] and has
no solution in K

n
if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that

1 =
∑
βi fi.

In other words, there exists a Nullstellensatz certificate 1 =
∑
βi fi where βi ∈ K[x1, . . . , xn]

if and only if there exists a Nullstellensatz certificate 1 =
∑
β′i fi where β′i ∈ K[x1, . . . , xn].

Definition 2.2. The polynomial identity 1 =
∑
βi fi is called a Nullstellensatz certificate, which

has degree d if maxi{deg(βi fi)} = d.

Now we describe the simple Nullstellensatz Linear Algebra (NulLA) algorithm. It accepts
as input a system of polynomial equations and outputs either a yes answer, if the system of
polynomial equations has a solution, or a no answer, along with a Nullstellensatz infeasibility
certificate, if the system has no solution. Before stating the algorithm in pseudocode, we clarify
the connection to linear algebra. Suppose the input polynomial system is infeasible over K, and
suppose further that an oracle has told us the certificate has degree d but that we do not know
the actual coefficients of the polynomials βi. Thus, we have the polynomial identity 1 =

∑
βi fi.

If we expand the identity into monomials, the coefficients of a monomial are linear expressions
3



in the coefficients of the βi. Since two polynomials over a field are identical precisely when the
coefficients of corresponding monomials are identical, from the 1 =

∑
βi fi, we get a system of

linear equations whose variables are the coefficients of the βi. Here is an example:

Example 2.3. Consider the polynomial system x2
1 − 1 = 0, x1 + x2 = 0, x1 + x3 = 0, x2 + x3 = 0.

This system has no solution, and a Nullstellensatz certificate of degree two.

1 = (c0)︸︷︷︸
β1

(x2
1 − 1)︸   ︷︷   ︸

f1

+ (c1x1 + c2x2 + c3x3 + c4)︸                          ︷︷                          ︸
β2

(x1 + x2)︸    ︷︷    ︸
f2

+ (c5x1 + c6x2 + c7x3 + c8)︸                          ︷︷                          ︸
β3

(x1 + x3)︸    ︷︷    ︸
f3

+ (c9x1 + c10x2 + c11x3 + c12)︸                              ︷︷                              ︸
β4

(x2 + x3)︸    ︷︷    ︸
f4

.

Expanding the tentative Nullstellensatz certificate into monomials and grouping like terms, we
arrive at the following polynomial equation:

1 = − c0 + (c4 + c8)x1 + (c4 + c12)x2 + (c8 + c12)x3

+ (c0 + c1 + c5)x2
1 + (c1 + c2 + c6 + c9)x1x2 + (c3 + c5 + c7 + c9)x1x3

+ (c2 + c10)x2
2 + (c3 + c6 + c10 + c11)x2x3 + (c7 + c11)x2

3.

From this, we extract a system of linear equations. Since a Nullstellensatz certificate is identi-
cally one, all monomials except the constant term must be equal to zero; namely:

−c0 = 1, c4 + c8 = 0, c4 + c12 = 0, c8 + c12 = 0,
c0 + c1 + c5 = 0, c1 + c2 + c6 + c9 = 0, c3 + c5 + c7 + c9 = 0,

c2 + c10 = 0, c3 + c6 + c10 + c11 = 0, c7 + c11 = 0.

By solving the system of linear equations, we reconstruct the Nullstellensatz certificate from the
solution:

1 = −(x2
1 − 1) +

1
2

x1(x1 + x2) +
1
2

x1(x1 + x3) − 1
2

x1(x2 + x3).

In general, one does not know the degree of the Nullstellensatz certificate in advance. What
one can do is to start with a tentative degree, say start at degree maxi{deg( fi)}, produce the cor-
responding linear system, and solve it. If the system has a solution, then we have found a Null-
stellensatz certificate demonstrating that the original input polynomials do not have a common
root. Otherwise, we increment the degree until we can be sure that there will not be a Nullstel-
lensatz certificate at all, and thus we can conclude the system of polynomials has a solution. The
number of iterations of the above steps determines the running time of NulLA. For this, there
are well-known upper bounds on the degree of the βi in the Nullstellensatz certificate (see Kollár
[16] and references therein), and thus on the degree of the certificate. These upper bounds for
the degrees of the βi in the Hilbert Nullstellensatz certificates for general systems of polynomials
are doubly-exponential in the number of input polynomials and their degree.

Unfortunately, Kollár’s bounds [16] are known to be sharp for some specially-constructed
systems. Although this immediately says that NulLA is not practical for arbitrary polynomial
systems, this is far from the end for computing with combinatorial polynomial systems. First of
all, a fundamental result by D. Lazard [19] provides ideals like ours (ideals that can be homog-
enized with the addition of one or more variables such that there no common zeros at infinity)
with a linear bound.
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Lemma 2.4 (Lazard [19]). Let f1, . . . , fk be homogeneous polynomials of K[x0, . . . , xn] that
generate an ideal I, let di be the degree of fi and assume that d1 ≥ d2 ≥ · · · ≥ dk ≥ 1 and
k ≥ n + 1. Then the following conditions are equivalent:

1) The k projective hypersurfaces defined by f1, . . . , fk have no point in common over the
algebraic closure of K (in particular, they have no point in common at infinity).

2) The ideal I contains a power of the maximal ideal M = 〈x0, x1, . . . , xn〉; namely, for some
power p, xp

i ∈ I for all xi.

3) Mp ⊂ I with p = d1 + d2 + · · · + dn+1 − n ≤ (n + 1)(max1≤i≤n+1{di} − 1) + 1.

4) The map φ : (β1, . . . , βk) → ∑
βi fi is surjective among all polynomials of degree p, when,

for all i, βi is a homogeneous polynomial of degree p − di.

The proof of Lemma 2.4 relies on advanced techniques in commutative and homological
algebra, and is presented in [19], pg. 169. As a consequence of Lemma 2.4, when given poly-
nomials fi ∈ K[x1, . . . , xn], we can consider their homogenization f̄i, using an extra variable x0
(e.g., x2− x can be homogenized to x2− xx0). If we are able to find a “projective” Nullstellensatz
of the form

xp
0 =

∑
βi f̄i ,

then we can substitute x0 = 1 in the above equation and obtain the form of the Nullstellensatz
that is more desirable for computation (e.g., 1 =

∑
β′i fi). Furthermore, the degree of β′i is less

than or equal to the degree of βi.
We can summarize the Lazard lemma as follows (see also Brownawell [4]):

Corollary 2.5. Given polynomials f1, . . . , fs ∈ K[x1, . . . , xn] whereK is an algebraically-closed
field and d = max{deg( fi)}, if f1, . . . , fs have no common zeros and f1, . . . , fs have no common
zeros at infinity, then 1 =

∑s
i=1 βi fi where

deg(βi) ≤ n(d − 1) .

Therefore, the bound on Nullstellensatz described by combinatorial ideals (for example, see
Lemma 3.1) gives linear growth on the degree of the Nullstellensatz certificates. This a con-
siderable improvement on the exponential bound predicted by Kollár, but our second point is
that, in practice, polynomial systems for combinatorial questions are extremely specialized, and
the degree growth is often very slow, and is much better than even Lazard’s bound — enough
to deal with very large graphs or other combinatorial structures. Now we describe NulLA in
pseudocode:

***************************************************** *******************************
ALGORITHM: Nullstellensatz Linear Algebra (NulLA) Algorithm
INPUT: A system of polynomial equations F = { f1(x) = 0, . . . , fs(x) = 0}
OUTPUT: yes, if F has solution, else no along with a Nullstellensatz certificate of infeasibility.

d ← maxi{deg( fi)}.
K ← known upper bounds on degree of Nullstellensatz for F (see e.g., [16])
while d ≤ K do

cert← ∑s
i=1 βi fi (where βi are degree (d − deg( fi)) polynomials with unknowns for coefficients).
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Extract a system of linear equations from cert with columns corresponding to unknowns,
and rows corresponding to monomials.

Solve the linear system.
if the linear system is consistent then

cert← ∑s
i=1 βi fi (with unknowns in βi replaced with linear system solution values.)

print “The system of equations F is infeasible.”
return no with cert.

end if
d ← d + 1.

end while
print “The system of equations F is feasible.”
return yes.

***************************************************** *******************************

This opens several theoretical questions. It is natural to ask about lower bounds on the degree
of the Nullstellensatz certificates. Little is known, but recently it was shown in [10], that for
the problem of deciding whether a given graph G has an independent set of a given size, a
minimum-degree Nullstellensatz certificate for the non-existence of an independent set of size
greater than α(G) (the size of the largest independent set in G) has βi with degree less than or
equal to α(G), and it is very dense; specifically, it contains at least one term per independent set
in G. For polynomial systems coming from logic there has also been an effort to show degree
growth in related polynomial systems (see [5, 13] and the references therein). Another question
is to provide tighter, more realistic upper bounds for concrete systems of polynomials. It is a
challenge to settle it for any concrete family of polynomial systems.

3. Some mathematical ideas to optimize NulLA

Since we are interested in practical computational problems, it makes sense to explore re-
finements and variations that make NulLA robust and much faster for concrete challenges. The
main computational component of NulLA is to construct and solve linear systems for finding
Nullstellensatz certificates of increasing degree. These linear systems are typically very large for
reasonably-sized problems, even for certificate degrees as low as six, which can produce linear
systems with millions of variables (see Section 4). Furthermore, the size of the linear system
increases dramatically with the degree of the certificate. In particular, the number of variables in
the linear system to find a Nullstellensatz certificate of degree d is precisely

∑
i

(
n+di

di

)
where n is

the number of variables in the polynomial system and di = d − deg( fi) is the degree of βi. Note
that

(
n+d

d

)
is the number of possible monomials of degree d or less. Also, the number of non-zero

entries in the constraint matrix is precisely
∑

i Mi

(
n+di

di

)
where Mi is number of monomials in fi.

For this reason, in this section, we explore mathematical approaches for solving the linear
system more efficiently and robustly, for decreasing the size of the linear system for a given de-
gree, and for decreasing the degree of the Nullstellensatz certificate for infeasible polynomial
systems thus significantly reducing the size of the largest linear system that we need to solve to
prove infeasibility. Note that these approaches to reduce the degree of the Nullstellensatz certifi-
cates do not decrease the available upper bound on the degree of the Nullstellensatz certificate
required for proving feasibility, but they work in particular instances.

The mathematical ideas we explain in this section can be applied to arbitrary polynomial
systems, but to implement them, one has to look for the right structures in the polynomials.
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In what follows we illustrate this with the problem of deciding whether the vertices of a graph
permit a proper 3-coloring.

3.1. NulLA over Finite Fields

The first idea is that, for combinatorial problems, one can often carry out calculations over
finite fields instead of relying on unstable floating-point calculations. The following encoding (a
variation of [2] over the complex numbers) allows us to compute over F2, which is robust and
much faster in practice (also see [12]):

Lemma 3.1. The graph G is 3-colorable if and only if the zero-dimensional system of equations
x3

i +1 = 0,∀i ∈ V(G), and x2
i + xix j + x2

j = 0,∀{i, j} ∈ E(G), has a solution over F2, the algebraic
closure of F2.

Before we prove Lemma 3.1, we introduce a convenient notation: Let α be an algebraic
element over F2 such that α2 + α+ 1 = 0. Thus, although x3

i + 1 has only one root over F2, since
x3

i + 1 = (xi + 1)(x2
i + xi + 1), the polynomial x3

i + 1 has three roots over F2, which are 1, α and
α + 1.

Proof. If the graph G is 3-colorable, simply map the three colors to 1, α and α + 1. Clearly, the
vertex polynomial equations x3

i +1 = 0 are satisfied. Furthermore, given an edge {i, j}, xi + x j , 0
since variable assignments correspond to a proper 3-coloring and adjacent vertices are assigned
different roots. This implies that x3

i + x3
j = (xi + x j)(x2

i + xix j + x2
j ) = 1 + 1 = 0. Therefore,

x2
i + xix j + x2

j = 0 and the edge polynomial equations are satisfied.
Conversely, suppose that there exists a solution to the system of polynomial equations.

Clearly, every vertex is assigned either 1, α or α + 1. We will show that adjacent vertices are
assigned different values. Our proof is by contradiction: Assume that two adjacent vertices i, j
are assigned the same value β. Then, 0 = x2

i + xix j + x2
j = β2 + β2 + β2 = 3β2 , 0. Therefore,

adjacent vertices are assigned different roots, and a solution to the system corresponds directly
to a proper 3-coloring.

We remark that this result can be extended to k-colorability and Fq, when q is relatively
prime to k. Lemma 3.1 allows us to certify graph non-3-colorability very rapidly over F2 instead
of working over its algebraic closure. Namely,

Corollary 3.2. A graph G is non-3-colorable if and only if there exists a Nullstellensatz cer-
tificate 1 =

∑
βi fi where βi ∈ F2[x1, . . . , xn] where the polynomials fi ∈ F2[x1, . . . , xn] are as

defined in Lemma 3.1.

This corollary enables us to compute over F2, which is extremely fast in practice (see Section
4).

Finally, the degree of Nullstellensatz certificates necessary to prove infeasibility can indeed
be lower over F2 than over the rationals. For example, over the rationals, every odd-wheel
has a minimum non-3-colorability certificate of degree six [10]. However, over F2, every odd-
wheel has a Nullstellensatz certificate of degree three. Therefore, not only are the mathematical
computations more efficient over F2 as compared to the rationals, but the algebraic properties of
the certificates themselves are sometimes more favorable for computation as well.
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3.2. Reducing the Nullstellensatz degree by appending polynomial equations
We have discovered that by appending certain valid but redundant polynomial equations to

the system of polynomial equations described in Lemma 3.1, we have been able to decrease the
degree of the Nullstellensatz certificate necessary to prove infeasibility. A valid but redundant
polynomial equation is any polynomial equation g(x) = 0 that is true for all the zeros of the
polynomial system f1(x) = 0, ..., fs(x) = 0, i.e., g ∈ √I, the radical ideal of I, where I is the
ideal generated by f1, ..., fs. We refer to a redundant polynomial equation appended to a system
of polynomial equations, with the goal of reducing the degree of a Nullstellensatz certificate, as
a degree-cutter. Note that appending an equation could never increase the necessary degree of a
Nullstellensatz certificate.

For example, for 3-coloring, consider a triangle described by the vertices {x, y, z}. Whenever
a triangle appears as a subgraph in a graph, the vertices of the triangle must be colored differently.
We capture that additional requirement with the equation

x2 + y2 + z2 = 0, (1)

which is satisfied if and only if x , y , z , x since x, y and z are third roots of unity. It is worth
remarking that the equation x + y + z = 0 also implies x , y , z , x. We use the equation
x2 + y2 + z2 = 0 instead, which is homogeneous of degree two, because the edge equations
from Lemma 3.1 are also homogeneous of degree two, and this helps preserve the balance of
monomials in the final certificate.

Consider the Koester graph [15] from Figure 1, a graph with 40 vertices and 80 edges. This
graph has chromatic number four, and a corresponding non-3-colorability certificate of degree
six. The size (after preprocessing) of the associated linear system required by NulLA to produce
this certificate was 8, 724, 468×10, 995, 831 and required 5 hours and 17 minutes of computation
time.

Figure 1: Koester graph

When we inspect the Koester graph in Figure 1, we can see that this graph contains 25 tri-
angles. When we append these additional 25 equations to the system of polynomial equations
describing this graph, the degree of the Nullstellensatz certificate drops from six to three, and
now, with the addition of the 25 triangle equations, NulLA only needs to solve a 4, 626 × 4, 346
linear system to produce a degree one certificate, which takes 0.2 seconds of computation time.
Note that even though we have appended equations to the system of polynomial equations, be-
cause the degree of the overall certificate is drastically reduced, the size of the resulting linear
system is still much, much smaller.

These degree-cutter equations for 3-colorability (1) can be extended to k-colorability. A (k −
1)-clique implies that all nodes in the clique have a different color. Then, given the (k− 1)-clique
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with the vertices x1 through xk−1, the equation xk−1
1 + xk−1

2 + ...+ xk−1
k−1 = 0 is valid. We conjecture

that these equations may also decrease the minimal degree of the Nullstellensatz certificate if one
exists.

The degree-cutter equations for 3-colorability (1) are not always sufficient to reduce the de-
gree of the Nullstellensatz. Consider the graph from Figure 2. Using only the polynomials from
Lemma 3.1, the graph in Figure 2 has a degree six certificate. The graph contains three tri-
angles: {1, 2, 6}, {2, 5, 6} and {2, 6, 7}. In this case, after appending the degree-cutter equations
for 3-colorability (1) the degree of the minimal Nullstellensatz certificate for this graph is still
six. However, for this graph, there are other types of equations that we can append to lower the
degree, which we discuss below.

1 2

34

5 6
7

8

910

11

12

Figure 2: A graph with a degree four certificate.

The polynomial equation g(x) = 0 that we append to the system of equations need not be-
long to the radical

√
I as above, but instead, we only require the weaker condition that f1(x) =

0, ..., fs(x) = 0 is feasible if and only if f1(x) = 0, ..., fs(x) = 0, g(x) = 0 is feasible.
For example, if a graph has a k-coloring, then it still has a k-coloring after fixing the color

of one of the vertices, which means that the polynomial system encoding graph coloring has a
solution if and only if it has a solution after appending the equation g(x) = xi − α = 0 for some
vertex i where α is a kth root of unity, say 1. Note that appending the polynomial g(x) = xi−α = 0
is the same as fixing the value of xi to α in the polynomial system thereby eliminating xi from
the system, which is a more efficient approach in practice. We found that even fixing just one
variable can lead to a lower certificate degree for non-trivial graphs.

For example, consider the graph in Figure 2, which has a degree six certificate of non-3-
colorability. This graph has a degree four certificate after fixing x1 to 1, that is, after appending
the equation x1 − 1 = 0 to the system of polynomial equations encoding graph 3-colorability.

Moreover, for graph coloring, we can fix two variables corresponding to two adjacent nodes
to two different roots of unity without affecting the feasibility of the polynomial system, and
furthermore, we can fix k variables corresponding to a k-clique to k different roots of unity.
Fixing variables to roots of unity other than 1 complicates the polynomial system since then the
coefficient field must be extended to include the roots of unity. Specifically, if we wish to fix
variables to kth roots of unity other than one, then we need to extend the field K to the splitting
field of xk

0 − 1 over K, which is the smallest field containing K and all the kth roots of unity.
Note that, for 3-coloring, the splitting field of x3

0 − 1 over F2 is isomorphic to F22 . Performing
the linear algebra operations over the field extension is slower, but if fixing more variables leads
to a lower Nullstellensatz degree, then it may be computationally worthwhile doing so.

For instance, consider again the graph in Figure 2, which has a degree four certificate after
fixing x1. There is a degree three certificate if instead we fix the variables x2, x5 and x6 to three
different roots of unity since they correspond to a triangle in the graph.

The difficulty with the degree-cutter approach is in finding candidate degree-cutters and in
9



determining how many of the candidate degree-cutters to append to the system. There is an ob-
vious trade-off here between the time spent finding degree-cutters together with the time penalty
incurred related to the increased size of the linear system that must be solved versus the benefit
of reducing the degree of the Nullstellensatz certificate.

3.3. Branching

Branching is another way of appending polynomial equations to reduce the degree of the
Nullstellensatz certificate required to prove infeasibility. The well-known main fact behind
branching is the following: given g1(x), g2(x) ∈ K[x1, ..., xn] such that g1(x)g2(x) ∈ I where
I is the ideal generated by f1, ..., fk, the polynomial system f1(x) = 0, ..., fk(x) = 0 is infeasible if
and only if both the subsystem f1(x) = 0, ..., fk(x) = 0, g1(x) = 0 is infeasible and the subsystem
f1(x) = 0, ..., fk(x) = 0, g2(x) = 0 is infeasible. The obvious choice for g1(x) and g2(x) is where
one of the polynomials fi factors as fi(x) = g1(x)g2(x). Thus, to check for infeasibility of a poly-
nomial system, we can check for infeasibility of two more constrained polynomial subsystems
in the hope that the more constrained subsystems have lower minimal degrees than the original
system such that it is faster to prove infeasibility of the two subsystems than the original system.

This approach of creating two more constrained polynomials system from one can be applied
recursively leading to the following general branching scheme. First, we try to find a Nullstel-
lensatz certificate of infeasibility of a particular degree of the original system, and then, if this
fails, instead of increasing the degree and trying again, we branch and attempt to find a certificate
of the same degree for the two subsystems. If we fail to find a certificate for one or both of the
subsystems, then again, we branch on the failed subsystem and try again to find a certificate of
the same degree, and so on. If all generated subsystems are infeasible, the original system is
infeasible. If, however, we reach a subsystem for which we can no longer branch on and we
cannot prove infeasibility, then we must start the branching process again with a higher degree.
We must keep increasing the degree until infeasibility is shown or until the degree is high enough
to prove feasibility.

We applied this branching approach to the case of 3-coloring of a graph G = (V, E) where
we tried to find a degree three certificate of infeasibility for the polynomial system encoding
3-coloring over F2. Here, to branch on a subsystem, we choose a variable xi and branch on the
two separate cases for g1 = xi +1 and g2 = x2

i + xi +1 where in the first case xi is fixed to 1 and in
the second case xi is constrained to be a root of unity other than 1. The graph below has a degree
six certificate of non-3-colorability, which takes 6.33 seconds to compute on a machine with
dual Opteron nodes, 2GHz clock speed, and 12 GB of RAM. If we run the branching algorithm
above, then we can prove infeasibility of subsystems in 0.01 seconds by proving infeasibility
of 9 subsystems via degree three certificates. See Section 4 for more results for the branching
algorithm.

Interestingly, the above branching algorithm for 3-colorability has the important property that
if we reach a subsystem where we have branched on every variable but we cannot find a degree
three certificate, then the graph is 3-colorable – we have proven feasibility and we do not need
to increase the degree and try again. If we have branched on every variable, then every variable
is either is fixed to be 1 or not 1, and this subsystem is infeasible if and only if two adjacent
vertices have been fixed to be 1 or the subgraph induced by the vertices that are fixed to be not 1
is not 2-colorable, and in either of these two cases, there exists a degree three certificate attesting
infeasibility as shown below: Firstly, if two adjacent vertices i, j ∈ V are fixed to 1, then the
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Figure 3: An example of a Liu-Zhang 4-CGU.

following is a degree two certificate of infeasibility:

(1 + xi + x j)(xi + 1) + (x2
i + xix j + x2

j ) + (x j)(x j + 1) = 1.

Secondly, a graph is not 2-colorable if and only if there exists an odd length cycle in the graph.
Now, if C = (v1, v2, ..., vs) ⊆ V is an odd length cycle among the vertices fixed to not 1, then the
following is a degree three certificate of infeasibility:

s−1∑

r=1

[
(xvr + xvr+1 + 1)(x2

vr
+ xvr + 1) + (xvr )(x2

vr+1
+ xvr+1 + 1) + (xvr )(x2

vr
+ xvr xvr+1 + x2

vr+1
)
]

= 1

Branching can also be applied for arbitrarily many subsystems: given g1, ..., gs ∈ K[x1, ..., xn]
such that g1 · · · gs ∈ I where I is the ideal generated by f1, ..., fk, the polynomial system f1(x) =

0, ..., fk(x) = 0 is infeasible if and only if each subsystem f1(x) = 0, ..., fk(x) = 0, gi(x) = 0 is
infeasible for all i = 1, ..., s.

3.4. Alternative Nullstellensätze

There is another approach we have found to decrease the minimal degree of the Nullstellen-
satz certificate. We now introduce the idea of an alternative Nullstellensatz, which follows from
the Hilbert Nullstellensatz.

Corollary 3.3 (Alternative Nullstellensatz). A system of polynomial equations f1(x) = 0, . . . ,
fs(x) = 0 where fi ∈ K[x1, . . . , xn] and K is an algebraically closed field has no solution in Kn

if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] and g ∈ K[x1, ..., xn] such that
g =

∑
βi fi and the system f1(x) = 0, . . . , fs(x) = 0 and g(x) = 0 has no solution.

The Hilbert Nullstellensatz is a special case of this alternative Nullstellensatz where g(x) =

1. We can easily adapt the NulLA algorithm to use this alternative Nullstellensatz given the
polynomial g. Here, the polynomial g determines the constant terms of the linear system that
we need to solve to find a certificate of infeasibility. The idea here is that the minimal degree
of the alternative Nullstellensatz certificate is sometimes smaller than the minimal degree of the
ordinary Nullstellensatz certificate.

In the case of 3-colorability (and also more generally k-colorability), we may choose g as any
non-trivial monomial since g(x) = 0 implies that xi = 0 for some i = 1, ..., n, which contradicts
that x3

i −1 = 0. For the graph in Figure 2, if we choose g(x) = x1x8x9, then the minimal degree of
11



the Nullstellensatz certificate drops to three (after appending degree-cutter polynomial equations
to the system).

x1 x8 x9 = (x1 + x2)(x2
1 + x1 x2 + x2

2) + (x4 + x9 + x12)(x2
1 + x1 x4 + x2

4)

+ (x1 + x4 + x8)(x2
1 + x1 x12 + x2

12) + (x2 + x7 + x8)(x2
2 + x2 x3 + x2

3)

+ (x3 + x8)(x2
2 + x2 x7 + x2

7) + (x10 + x12)(x2
4 + x4 x11 + x2

11)

+ (x1 + x4 + x10)(x2
4 + x4 x9 + x2

9) + (x2 + x7 + x8)(x2
3 + x3 x8 + x2

8)

+ (x2 + x10)(x2
5 + x5 x6 + x2

6) + (x5 + x10)(x2
5 + x5 x9 + x2

9)

+ (x2 + x3 + x12)(x2
7 + x7 x8 + x2

8) + (x1 + x7 + x8)(x2
8 + x8 x12 + x2

12)

+ (x2 + x10)(x2
6 + x6 x7 + x2

7) + (x10 + x12)(x2
7 + x7 x11 + x2

11)

+ (x5)(x2
2 + x2 x5 + x2

5) + (x5 + x7)(x2
6 + x6 x10 + x2

10)

+ (x4 + x7)(x2
10 + x10 x11 + x2

11) + (x4 + x5)(x2
9 + x9 x10 + x2

10)

+ (x1)(x2
8 + x8 x9 + x2

9) + (x4 + x7)(x2
11 + x11 x12 + x2

12) + (x5 + x7)(x2
2 + x2 x6 + x2

6)

+ (x8 + x9) (x2
1 + x2

2 + x2
6)︸           ︷︷           ︸

degree-cutter

+(x9) (x2
2 + x2

5 + x2
6)︸           ︷︷           ︸

degree-cutter

+(x8) (x2
2 + x2

6 + x2
7)︸           ︷︷           ︸

degree-cutter

.

We note g(x) = x1x8x9 was not the only alternative Nullstellensatz certificate that we were
able to find: g(x) = x7x4x9 also produced a certificate. 2

The apparent difficulty in using the alternative Nullstellensatz approach is in choosing g(x).
One solution to this problem is to try and find a Nullstellensatz certificate for a set of g(x) in-
cluding g(x) = 1. For example, for the graph in Figure 2, we tried to find a certificate of degree
three for the set of all possible monomials of degree three. Since choosing different g(x) only
means changing the constant terms of the linear system in NulLA (the other coefficients remain
the same), solving for a set of g(x) can be accomplished very efficiently.

3.5. Deleting equations and exploiting linear dependencies
Here are two more ideas on how to reduce the size of the linear system to find a Nullstellen-

satz certificate of infeasibility.
First, one way to reduce the size of the linear system is to remove all polynomial equations

fi(x) = 0 for which there exists h1, ..., hi−1, hi+1, ..., hk ∈ K[x1, ..., xn] such that fi =
∑

j,i h j f j and
deg(h j f j) ≤ deg( fi) for all j , i. If the above condition holds for fi, then the polynomial is redun-
dant since fi is in the ideal generated by f1, ..., fi−1, fi+1, ..., fk. Moreover, removing fi can never
increase the degree of a certificate since replacing fi with

∑
j,i h j f j in a given certificate gives

another certificate of the same degree but without fi. Note that the degree-cutting polynomials
that we add in Section 3.2 are chosen specifically so that they do not satisfy the above condition,
and thus, those polynomials, although redundant, may still reduce the degree.

For the case of k-coloring for a connected graph G = (V, E), this means we can remove
all but one of the vertex polynomials xk

i − 1 using the above condition as follows: Let P =

(v1, v2, ..., vs) ⊆ V be a path from vertex i to j in G. Then,

(xk
j − 1) = (xk

i − 1) +

s−1∑

r=1

(xvr − xvr+1 )(xk−1
vr

+ xk−2
vr

xvr+1 + ... + xvr xk−2
vr+1

+ xk−1
vr+1

).

So, we can remove all vertex equations xk
j − 1 where j , i.
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To present the second idea it is best to consider the matrix associated to the linear system of
the Nullstellensatz. Consider the input polynomial system F = { f1, . . . , fs}. As we observed in
Section 2, for a given fixed positive integer d serving as a tentative degree for the Nullstellensatz
certificate, the Nullstellensatz coefficients come from the solution of a system of linear equations.
We now take a closer look at the matrix equation MF,d y = bF,d defining the system of linear
equations. First of all, the matrix MF,d has one row per monomial xα of degree less than or
equal to d on the n variables and one column per polynomial of the form xδ fi, i.e., the product
of a monomial xδ of degree less than or equal to d − deg( fi) and a polynomial fi ∈ F. Thus,
MF,d = (Mxα,xδ fi ) where Mxα,xδ fi equals the coefficient of the monomial xα in the polynomial xδ fi.
The variable y has one entry for every polynomial of the form xδ fi denoted yxδ fi , and the vector
bF,d has one entry for every monomial xα of degree less than or equal to d where (bF,d)xα = 0 if
α , 0 and (bF,d)1 = 1.

Example 3.4. Consider the complete graph K4. The shape of a degree-three Hilbert Nullstellen-
satz certificate over F2 for non-3-colorability is as follows:

1 = (c0)(x3
1 + 1)

+ (c1
12 x1 + c2

12 x2 + c3
12 x3 + c4

12 x4)(x2
1 + x1 x2 + x2

2)

+ (c1
13 x1 + c2

13 x2 + c3
13 x3 + c4

13 x4)(x2
1 + x1 x3 + x2

3)

+ (c1
14 x1 + c2

14 x2 + c3
14 x3 + c4

14 x4)(x2
1 + x1 x4 + x2

4)

+ (c1
23 x1 + c2

23 x2 + c3
23 x3 + c4

23 x4)(x2
2 + x2 x3 + x2

3)

+ (c1
24 x1 + c2

24 x2 + c3
24 x3 + c4

24 x4)(x2
2 + x2 x4 + x2

4)

+ (c1
34 x1 + c2

34 x2 + c3
34 x3 + c4

34 x4)(x2
3 + x3 x4 + x2

4)

Note that we have preprocessed the certificate by removing the redundant polynomials x3
i + 1

where i , 1 and removing some variables that we know a priori can be set to zero, which results
in a matrix with less columns. As we explained in Section 2, this certificate gives a linear system
of equations in the variables c0 and ck

i j (note that k is a superscript and not an exponent). This
linear system can be captured as the matrix equation MF,1c = bF,1 where the matrix MF,1 is as
follows.
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c0 c1
12 c2

12 c3
12 c4

12 c1
13 c2

13 c3
13 c4

13 c1
14 c2

14 c3
14 c4

14 c1
23 c2

23 c3
23 c4

23 c1
24 c2

24 c3
24 c4

24 c1
34 c2

34 c3
34 c4

34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3

1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x3 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x4 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x1 x2

2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
x1 x2 x3 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1 x2 x4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x1 x2
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x1 x3 x4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
x1 x2

4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
x3

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
x2

2 x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
x2

2 x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
x2 x2

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
x2 x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

x2 x2
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

x3 x2
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

x3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

There are often many columns in the constraint matrix of the linear system that are linear
combinations of other columns, and if we could avoid creating these columns in the first place,
then solving the linear system would be more efficient. Recall that each column of the ma-
trix corresponds to the polynomial xα fi for some monomial xα and some polynomial fi where
deg(xα fi) ≤ d. The column xα fi is thus a linear combination of the other columns of the matrix
if there exists h1, ..., hk ∈ K[x1, ..., xn] such that xα fi =

∑
j h j f j where deg(h j f j) ≤ d and the

monomial xα does not appear in the polynomial hi.
There is a simple way of finding columns that are linear combinations of other columns in

many cases: Let cxα be a non-zero term in f1 where deg(xα) = deg( f1). Then, for every xγ fi
(i > 1) where xα|xγ and deg(xγ fi) ≤ d, we have xγ fi = h1 f1 + hi fi where h1 = xγ − xγ−α fi/c and
hi = xγ−α f1/c. Note that xγ does not appear in hi, deg(h1 f1) ≤ deg(xγ fi) ≤ d and deg(hi fi) ≤
deg(xγ fi) ≤ d. Thus, xγ fi corresponds to a column in the matrix that is a linear combination of
other columns and can therefore be eliminated.

Hence, a general approach to avoid generating many columns of the matrix is thus as follows.
Select a monomial xα in f1 where deg(xα) = deg( f1). Then, from above, we can remove all
monomials from βi (i > 1) that are divisible by xα. Repeating this, for every i = 1, ..., k, we can
we can choose a monomial xα in fi where deg(xα) = deg( fi), and we can remove all monomials
from β j ( j > i) that are divisible by xα; thus eliminating potentially many rows from the constraint
matrix. Note that we must be careful to avoid circular dependencies, which is why we only
eliminate monomials from β j where j > i.

3.6. NulLA with symmetries
Certainly the matrix MF,d we presented above is rather large already for small systems of

polynomials. The main point of this section is to demonstrate how to reduce the size of the
matrix by using a group action on the variables, e.g., using symmetries or automorphisms in a
graph. Suppose we have a finite permutation group G acting on the variables x1, . . . , xn. Clearly
G induces an action on the set of monomials with variables x1, x2, . . . , xn of degree t. We will
assume that the set F of polynomials is invariant under the action of G, i.e., g( fi) ∈ F for each
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fi ∈ F. Denote by xδ, the monomial xδ1
1 xδ2

2 . . . xδn
n , a monomial of degree δ1 + δ2 + · · · + δn.

Denote by Orb(xα),Orb(xδ fi) the orbit under G of monomial xα and, respectively, the orbit of
the polynomial obtained as the product of the monomial xδ and the polynomial fi ∈ F.

We now introduce a new matrix equation M̄F,d,G ȳ = b̄F,d,G. The rows of the matrix M̄F,d,G

are indexed by the orbits of monomials Orb(xα) where xα is a monomial of degree less than
or equal to d, and the columns of M̄F,d,G are indexed by the orbits of polynomials Orb(xδ fi)
where fi ∈ F and the degree of the monomial xδ less than or equal to d − deg( fi). Then, let
M̄F,d,G = (M̄Orb(xα),Orb(xδ fi)) where

M̄Orb(xα),Orb(xδ fi) =
∑

xγ f j∈Orb(xδ fi)

Mxα,xγ f j .

Note that Mxα,xδ fi = Mg(xα),g(xδ fi) for all g ∈ G meaning that the coefficient of the monomial xα

in the polynomial xδ fi is the same as the coefficient of the monomial g(xα) in the polynomial
g(xδ fi). So, ∀xd ∈ Orb(xα),

∑

xγ f j∈Orb(xδ fi)

Mxα,xγ f j =
∑

xγ f j∈Orb(xδ fi)

Mxd ,xγ f j ,

and thus, M̄Orb(xα),Orb(xδ fi) is well-defined. We call the matrix M̄F,d,G the orbit matrix. The vari-
able ȳ has one entry for every polynomial orbit Orb(xδ fi) denoted ȳOrb(xδ fi). The vector b̄F,d has
one entry for every monomial orbit Orb(xα), and let (b̄F,d)Orb(xα) = (bF,d)xα = 0 if α , 0 and
(b̄F,d)Orb(1) = (bF,d)1 = 1. The main result in this section is that, under some assumptions, the
system of linear equations M̄F,d,G ȳ = b̄F,d,G has a solution if and only if the larger system of
linear equations MF,d y = bF,d has a solution.

Theorem 3.5. Let F = { f1, . . . , fs} ⊂ K[x1, . . . , xn], be a polynomial system, and let K be an
algebraically-closed field, and a finite group of permutations G ⊂ S n. Let MF,d, M̄F,d,G denote
the matrices defined above. Suppose that the polynomial system F is closed under the action of
the group G permuting the indices of variables x1, . . . , xn. Suppose further that the order of the
group |G| and the characteristic of the field K are relatively prime. The degree d Nullstellensatz
linear system of equations MF,d y = bF,d has a solution over K if and only if the system of linear
equations M̄F,d,G ȳ = b̄F,d,G has a solution over K.

Proof. To simplify notation, let M = MF,d, b = bF,d, M̄ = M̄F,d,G and b̄ = b̄F,d,G. First, we show
that if the linear system My = b has a solution, then there exists a symmetric solution y of the
linear system My = b meaning that yxδ fi is the same for all xδ fi in the same orbit, i.e., yxγ f j = yxδ fi
for all xγ f j ∈ Orb(xδ fi). The converse is also trivially true.

Since the rows and columns of the matrix M are labeled by monomials xα and polynomials
xδ fi respectively, we can think of the group G as acting on the matrix M, permuting the entries
M, i.e., applying g ∈ G to M gives the permuted matrix g(M) where

g(M)g(xα),g(xδ fi) = Mxα,xδ fi .

Moreover, since Mxα,xδ fi = Mg(xα),g(xδ fi) for all g ∈ G, we must have g(M) = M, so the matrix M
is invariant under the action of the group G. Also, since the entries of the variable y are labeled
by polynomials of the form xα fi, we can also think of the group G as acting on the vector y,
permuting the entries of the vector y, i.e., applying g ∈ G to y gives the permuted vector g(y)
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where g(y)g(xδ fi) = yxδ fi . Similarly, G acts on the vector b, and in particular, g(b) = b. Next, we
show that if My = b, then Mg(y) = b for all g ∈ G accordingly:

My = b ⇒ g(My) = g(b) ⇒ g(M)g(y) = b ⇒ Mg(y) = b,

for all g ∈ G. Now, let

y′ =
1
|G|

∑

g∈G
g(y).

Note we need that |G| is relatively prime to the characteristic of the fieldK so that |G| is invertible.
Then,

My′ =
1
|G|

∑

g∈G
Mg(y) =

1
|G|

∑

g∈G
b = b,

so y′ is a solution. Also, y′xδ fi
= 1
|G|

∑
g∈G yg(xδ fi), so y′xδ fi

= y′xγ f j
for all xγ f j ∈ Orb(xδ fi). There-

fore, y′ is a symmetric solution as required.
Now, assume that there exists a solution of My = b. By the above argument, we can assume

that the solution is symmetric, i.e., yxδ fi = yxγ f j where g(xδ fi) = xγ f j for some g ∈ G. From this
symmetric solution of My = b, we can find a solution of M̄ȳ = b̄ by setting

ȳOrb(xδ fi) = yxδ fi .

To show this, we check that (M̄ȳ)Orb(xα) = b̄Orb(xα) for every monomial xα.

(M̄ȳ)Orb(xα) =
∑

all Orb(xδ fi)

M̄Orb(xα),Orb(xδ fi) ȳOrb(xδ fi)

=
∑

all Orb(xδ fi)


∑

xγ f j∈Orb(xδ fi)

Mxα ,xγ f j

 ȳOrb(xδ fi)

=
∑

all Orb(xδ fi)


∑

xγ f j∈Orb(xδ fi)

Mxα ,xγ f j yxγ f j



=
∑

all xδ fi

Mxα ,xδ fi yxδ fi = (My)xα .

Thus, (M̄ȳ)Orb(xα) = b̄Orb(xα) since (My)xα = bxα = b̄Orb(xα).
Next, we establish the converse more easily. Recall that the columns of M̄ are labeled by

orbits. If there is a solution for M̄ȳ = b̄, then to recover a solution of My = b, we set

yxδ fi = ȳOrb(xδ fi).

Note that y is a symmetric solution. Using the same calculation as above, we have that (My)xα =

(M̄ȳ)Orb(xα), and thus, My = b.

Example 3.6 (Continuation of Example 3.4). Now consider the action of the symmetry group
G generated by the cycle (2,3,4) (a cyclic group of order three). The permutation of variables
permutes the monomials and yields a matrix MF,1,G. We have now grouped together monomials
and terms within orbit blocks in the matrix below. The blocks will be later replaced by a single
entry, shrinking the size of the matrix.
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c0 c1
12 c1

13 c1
14 c2

12 c3
13 c4

14 c3
12 c4

13 c2
14 c4

12 c2
13 c3

14 c1
23 c1

34 c1
24 c2

23 c3
34 c4

24 c2
24 c3

23 c4
34 c2

34 c3
24 c4

23

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x2 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x3 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x2

1 x4 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 x2

2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
x1 x2

3 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
x1 x2

4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
x1 x2 x3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
x1 x2 x4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1 x3 x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

x3
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

x3
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

x3
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

x2
2 x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

x2
3 x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

x2 x2
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

x2
2 x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

x2 x2
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

x3 x2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

x2 x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

The action of the symmetry group generated by the cycle (2,3,4) yields an orbit matrix M̄F,q,G
of about a third the size of the original one:

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0
Orb(x3

1) 1 3 0 0 0 0 0 0 0
Orb(x2

1 x2) 0 1 1 1 1 0 0 0 0
Orb(x1 x2

2) 0 1 1 0 0 2 0 0 0
Orb(x1 x2 x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2 x3 x4) 0 0 0 0 0 0 0 0 3

(mod 2)≡
c̄0 c̄1

12 c̄2
12 c̄3

12 c̄4
12 c̄1

23 c̄2
23 c̄2

24 c̄2
34

Orb(1) 1 0 0 0 0 0 0 0 0
Orb(x3

1) 1 1 0 0 0 0 0 0 0
Orb(x2

1 x2) 0 1 1 1 1 0 0 0 0
Orb(x1 x2

2) 0 1 1 0 0 0 0 0 0
Orb(x1 x2 x3) 0 0 0 1 1 1 0 0 0

Orb(x3
2) 0 0 1 0 0 0 1 1 0

Orb(x2
2 x3) 0 0 0 1 0 0 1 1 1

Orb(x2
2 x4) 0 0 0 0 1 0 1 1 1

Orb(x2 x3 x4) 0 0 0 0 0 0 0 0 1

If |G| is not relatively prime to the characteristic of the field K, then it is still true that, if
M̄y = b̄ has a solution, then My = b has a solution. Thus, even if |G| is not relatively prime to
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the characteristic of the field K, we can still prove that the polynomial system F is infeasible by
finding a solution of the linear system M̄y = b̄.

4. Experimental results

In this section, we present our experimental results, including a comparison between NulLA
and other graph coloring algorithms such as DSATUR, Branch-and-Cut [24], and the Alon-Tarsi
[1] and Gröbner basis methods. Given a certificate 1 =

∑
βi fi for graph non-3-colorability, the

degree of the fi input polynomials is constant over all input graphs. Thus, the degree affecting
NulLA computation time is the coefficient degree, defined to be max{deg(βi)}. In this way, almost
all of the graphs tested by NulLA had degree one or less coefficients in their certificates. This
algebraic property, coupled with our ability to compute over F2, allowed us to prove the non-3-
colorability of graphs with almost two thousand nodes.

4.1. Methods

Our computations were performed on machines with dual Opteron nodes, 2 GHz clock speed,
and 12 GB of RAM. No branching, degree-cutter equations or alternative Nullstellensatz certifi-
cates were used unless explicitly specified. We also eliminated redundant equations, and mono-
mials whose coefficients could be set to zero.

4.2. Test cases

We tested the following graphs:

1. DIMACS: The graphs from the DIMACS Computational Challenge (1993, 2002) are de-
scribed in detail at http://mat.gsia.cmu.edu/COLORING02/. This set of graphs is
the standard benchmark for graph coloring algorithms. We tested every DIMACS graph
whose associated NulLA matrix could be instantiated within 12 GB of RAM. For exam-
ple, we did not test C4000.5.clq, which has 4,000 vertices and 4,000,268 edges, yielding
a degree one NulLA matrix of 758 million non-zero entries and 1 trillion columns.

2. Mycielski: The Mycielski graphs are known for the gap between their clique and chro-
matic number. The Mycielski graph of order k is a triangle-free graph with chromatic
number k. The first few instances and the algorithm for their construction can be seen at
http://mathworld.wolfram.com/MycielskiGraph.html.

3. Kneser: The nodes of the Kneser-(t, r) graph are represented by the r-subsets of {1, . . . , t}.
Two nodes are adjacent if and only if their subsets are disjoint.

4. Random: We tested random graphs in 16 nodes with an edge probability of .27. This
probability was experimentally selected based on the boundary between 3-colorable and
non-3-colorable graphs and is explained in detail in Section 4.3.

5. Hard Instances: We also tested purported hard instances of 3-colorability. The algo-
rithms behind the generation of these graphs, and the associated experimental results are
described in detail in Section 4.5.
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4.3. Results

In this section, we present our experimental results on graphs with and without 4-cliques. We
also point out certain properties of NulLA-constructed certificates, and conclude with tests on
random graphs. Surprisingly, all but four of the DIMACS, Mycielski and Kneser graphs tested
with NulLA have degree three certificates, which implies that the β coefficients present in the
certificates have degree one or less.

The DIMACS graphs are primarily benchmarks for graph k-colorability, and thus contain
many graphs with large chromatic number. Such graphs often contain 4-cliques. Although testing
for graph 3-colorability is well-known to be NP-Complete, there exist many efficient (and even
trivial), polynomial-time algorithms for finding 4-cliques in a graph. Thus, we break our com-
putational investigations into two tables: Table 1 contains graphs without 4-cliques, and Table 3
contains graphs with 4-cliques (considered “easy” instances of 3-colorability). For space consid-
erations, we only display representative results for graphs of varying size for each family. The

Graph vertices edges rows cols
coeff

deg sec
m7 (Mycielski 7) 95 755 64,281 71,726 1 .46
m9 (Mycielski 9) 383 7,271 2,477,931 2,784,794 1 268.78

m10 (Mycielski 10) 767 22,196 15,270,943 17,024,333 1 14835
(8, 3)-Kneser 56 280 15,737 15,681 1 .07
(10, 4)-Kneser 210 1,575 349,651 330,751 1 3.92
(12, 5)-Kneser 792 8,316 7,030,585 6,586,273 1 466.47
(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333 1 216105

ash331GPIA.col 662 4,185 3,147,007 2,770,471 1 13.71
ash608GPIA.col 1,216 7,844 10,904,642 9,538,305 1 34.65
ash958GPIA.col 1,916 12,506 27,450,965 23,961,497 1 90.41
1-Insertions 5.col 202 1,227 268,049 247,855 1 1.69
2-Insertions 5.col 597 3,936 2,628,805 2,349,793 1 18.23
3-Insertions 5.col 1,406 9,695 15,392,209 13,631,171 1 83.45

Table 1: Graphs without 4-cliques.

size of the linear systems involved ranged from 15, 737×15, 681 up to 45, 980, 650×46, 378, 333
(for the (8, 3)-Kneser and (13, 5)-Kneser graphs, respectively).

However, not all of the DIMACS challenge graphs had degree one coefficient certificates.
We were unable to produce certificates for mug88 1, mug88 25, mug100 1 or mug100 25, even
when using degree-cutters and searching for alternative Nullstellensatz certificates. When testing
for a degree six certificate, the smallest of these graphs (mug88 1 with 88 vertices and 146 edges)
yielded a linear system with 1,170,902,966 non-zero entries and 390,340,149 columns. A matrix
of this size is not computationally tractable at this time because it cannot be instantiated within
available memory. Branching was also not successful on these graphs. The runs were terminated
after solving over 5 million subproblems. Section 4.5 investigates graphs from this family in
greater detail.

Recall that the certificates returned by NulLA consist of a single vertex polynomial (via
preprocessing), and edge polynomials describing either the original graph in its entirety, or a
non-3-colorable subgraph from the original graph. For example, if the graph contains a 4-clique
as a subgraph, often the Nullstellensatz certificate will only display the edges contained in the
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4-clique. In this case, we say that NulLA isolates a non-3-colorable subgraph from the original
graph. The size difference between these subgraphs and the input graphs is often dramatic, as
shown in Table 2.

Graph vertices edges
subgraph

vertices
subgraph
edges

miles1500.col 128 10,396 6 10
hamming8-4.clq 256 20,864 19 33

m10 (Mycielski 10) 767 22,196 11 20
(12, 5)-Kneser 792 8,316 53 102
dsjc1000.1.col 1,000 49,629 15 24

ash608GPIA.col 1,216 7,844 23 44
3-Insertions 5.col 1,406 9,695 56 110
ash958GPIA.col 1,916 12,506 24 45

Table 2: Original graph vs. non-3-colorable subgraph.

An overall analysis of these computational experiments shows that NulLA performs best on
sparse graphs. For example, the 3-Insertions 5 graph (with 1,406 nodes and 9,695 edges)
runs in 83 seconds, while the 3-FullIns 5 graph (with 2,030 nodes and 33,751 edges) runs
in 15027 seconds. Another example is p hat700-2 (with 700 nodes and 121,728 edges) and
will199GPIA (with 701 nodes and 7,065 edges). NulLA proved the non-3-colorability of
will199GPIA in 35 seconds, while p hat700-2 took 30115 seconds.

Finally, as an informal measure of the distribution of degree three certificates (certificates
with β coefficients of degree one or less), we generated random graphs of 16 nodes with edge
probability .27. We selected this probability because it lies on the boundary between feasible
and infeasible instances. In other words, graphs with edge probability less than .27 were al-
most always 3-colorable, and graphs with edge probability greater than .27 were almost always
non-3-colorable. However, we experimentally found that an edge probability of .27 created a
distribution that was almost exactly half and half. Of 100 trials, 48 were infeasible. Of those
48 graphs, 40 had degree three certificates and 8 had degree six certificates. Of these remaining
8 instances, we were able to find degree three certificates for all 8 by appending degree-cutters
or by finding alternative Nullstellensatz certificates. This tentative measure indicates that non-3-
colorability certificates of degrees greater than three may be rare.

4.4. NulLA vs. other algorithms
In this section, we compare NulLA to two other algebraic methods for detecting 3-colorabil-

ity: the Alon-Tarsi (AT) method, and the Gröbner basis (GB) method. We also briefly comment
on NulLA’s relation to well-known graph coloring heuristics such as DSATUR and Branch-
and-Cut [24]. We implemented the Alon-Tarsi method in C++, and used CoCoA Lib [6] to test
the Gröbner basis method. For brevity, we do not record any “internal data” about the various
algorithmic runs, such as the size of the underlying linear systems solved by NulLA or the
maximum number of monomials in the normal forms produced by the Alon-Tarsi method. In
the tables below, all certificates have degree three (β coefficients of degree one or less) and a “–”
signifies that the method was terminated after 4 hours of computation.

The Gröbner basis method refers to simply taking the Gröbner basis of the ideal defined in
Lemma 3.1. By Hilbert’s Nullstellensatz, the Gröbner basis is a constant if and only if the graph
is non-3-colorable.
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Graph vertices edges rows cols
coeff

deg sec
miles500.col 128 2,340 143,640 299,521 1 1.35

miles1000.col 128 6,432 284,042 823,297 1 7.52
miles1500.col 128 10,396 349,806 1,330,689 1 24.23
mulsol.i.5.col 197 3,925 606,959 773,226 1 6
zeroin.i.1.col 211 4,100 643,114 865,101 1 6

queen16 16.col 256 12,640 1,397,473 3,235,841 1 106
hamming8-4.clq 256 20,864 2,657,025 5,341,185 1 621.1
school1 nsh.col 352 14,612 4,051,202 5,143,425 1 210.74
MANN a27.clq 378 70,551 9,073,144 26,668,279 1 9809.22
brock400 4.clq 400 59,765 10,579,085 23,906,001 1 4548.59

gen400 p0.9 65.clq 400 71,820 10,735,248 28,728,001 1 9608.85
le450 5d.col 450 9,757 4,168,276 4,390,651 1 304.84
fpsol2.i.1.col 496 11,654 4,640,279 57,803,85 1 93.8
C500.9.clq 500 112,332 20,938,304 56,166,001 1 72752
homer.col 561 3,258 1,189,065 1,827,739 1 8

p hat700-2.clq 700 121,728 48,301,632 85,209,601 1 30115
will199GPIA.col 701 7,065 5,093,201 4,952,566 1 35

inithx.i.1.col 864 18,707 13,834,511 16,162,849 1 1021.76
qg.order30.col 900 26,100 23,003,701 23,490,001 1 13043

wap06a.col 947 43,571 37,703,503 41,261,738 1 1428
dsjc1000.1.col 1,000 49,629 45,771,027 49,629,001 1 2981.91
5-FullIns 4.col 1,085 11,395 13,149,910 12,363,576 1 200.09
3-FullIns 5.col 2,030 33,751 70,680,086 68,514,531 1 15027.9

Table 3: Graphs with 4-cliques.

The Alon-Tarsi method is based on the following (see Section 7 of [1] and references therein):

Theorem 4.1. Given a graph G with n vertices, let IG = 〈x3
1 − 1, . . . , x3

n − 1〉. Additionally, let

PG =
∏

(i, j)∈E(G)

(xi − x j)

Then PG ∈ IG if and only if G is non-3-colorable

In order to compute with the Alon-Tarsi method, we note that the set B = {x3
1 − 1, . . . , x3

n − 1}
is a Gröbner basis for IG. Thus, we simply take the normal form of PG with respect to B. If the
normal form is zero, PG ∈ IG, and the graph is non-3-colorable. The efficiency of the Alon-Tarsi
method can be increased by incrementally constructing PG [12]: we order the edges, and then
find the normal form of (xi1−x j1 ) with respect to B, and then the normal form of (xi1−x j1 )(xi2−x j2 )
with respect to B, etc.

We compared NulLA to the Gröbner basis and Alon-Tarsi methods on graphs with and with-
out 4-cliques; results are displayed in Tables 6 and 7, respectively. NulLA consistently out-
performed the Gröbner basis method. For example, on zeroin.i.1, NulLA ran in 6 seconds,
while CoCoA Lib took almost one hour. These experimental results indicate that NulLA scales
better than the Gröbner basis method.

NulLA also compared extremely favorably with the Alon-Tarsi method, which usually did
not terminate within the requisite time bounds. However, in the special case when the first few

21



vertices and edges of the graph happen to describe a non-3-colorable subgraph (such as a 4-
clique, or the Grötzch graph), the Alon-Tarsi method ran very quickly, because of the iterative
approach incorporated during implementation. Consider the example of the ninth Mycielski
graph (383 vertices and 7,271 edges): the Alon-Tarsi method terminated in .24 seconds, but after
we permuted the vertices and edges, the method consumed 9 GB of RAM over 4 hours of compu-
tation and only processed 30 edges. This example shows that the Alon-Tarsi method is extremely
sensitive to the vertex and edge ordering. If a similar iterative approach was incorporated either
into NulLA or the Gröbner basis method, these algorithms would likewise terminate early in this
special case.

As another example of the draw-backs of the Alon-Tarsi method, we considered edge-critical
graphs, where the entire input must be read. For example, the odd wheels form a trivial family of
edge-critical non-3-color-able graphs. The Alon-Tarsi method was unable to determine the non-
3-colorability of the 17-odd-wheel (18 vertices and 34 edges): after two hours of computation,
the normal form contained over 19 million monomials, and had consumed over 8 GB of RAM.
The experimental results are displayed in Table 4.

odd-wheels vertices edges NulLA GB AT
9 10 18 0 0 .05

11 12 22 0 0 .74
13 14 26 0 0 8.47
15 16 30 0 0 369.45
17 18 34 0 0 –

151 152 302 .21 2.21 –
501 502 1,002 15.58 126.83 –

1001 1,002 2,002 622.73 1706.69 –
2001 2,002 4,002 12905.6 – –

Table 4: NulLA, GB and AT on odd-wheel graphs.

We conclude with a short comment about NulLA’s relation to DSATUR and Branch-and-Cut
[24]. These heuristics return bounds on the chromatic number. In Table 5 (data taken from [24]),
we display the bounds returned by Branch-and-Cut (B&C) and DSATUR, respectively. In the
case of these graphs, NulLA determined non-3-colorability very rapidly (establishing a lower
bound of four), while the two heuristics returned lower bounds of three and two, respectively.
Thus, NulLA returned a tighter lower bound on the chromatic number than B&C or DSATUR.
We note that this example does not constitute a rigorous comparison between NulLA and B&C
or DSATUR.

B&C DSATUR NulLA
Graph vertices edges lb up lb up sec

4-Insertions 3 79 156 3 4 2 4 0
3-Insertions 4 281 1,046 3 5 2 5 1
4-Insertions 4 475 1,795 3 5 2 5 3
2-Insertions 5 597 3,936 3 6 2 6 12
3-Insertions 5 1,406 9,695 3 6 2 6 83

Table 5: NulLA vs. Branch-and-Cut and DSATUR.
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Graph vertices edges NulLA GB AT
miles500 128 2,340 1.35 133.91 .07
miles1000 128 6,432 7.52 802.23 0
miles1500 128 10,396 24.23 2598.84 .01
mulsol.i.5 197 3,925 6 18804.5 0
zeroin.i.1 211 4,100 6 2753.37 0

queen16 16 256 12,640 106 59466.9 0
hamming8-4 256 20,864 621.1 – –

le450 5d 450 9,757 304.84 – –
homer 561 3,258 8 – –

dsjc1000.1 1,000 49,629 2981.91 – –
5-FullIns 4 1,085 11,395 200.09 – 557.12
3-FullIns 5 2,030 33,751 15027.9 – 3.97

Table 6: NulLA, GB, AT on graphs with 4-cliques.

Graph vertices edges NulLA GB AT
Mycielski 4 11 20 0 .01 .22
Mycielski 5 23 71 0 .08 .23
Mycielski 6 47 236 .04 3.99 .22
Mycielski 7 95 755 .46 179.94 .23
Mycielski 8 191 2,360 7.72 9015.06 .23
Mycielski 9 383 7,271 268.78 – .22
Mycielski 9
permuted 383 7,271 497.47 – –

(6, 2)-Kneser 15 45 0 .03 1.87
(8, 3)-Kneser 56 280 .07 18.39 –

(10, 4)-Kneser 210 1,575 3.92 9771.76 –
(12, 5)-Kneser 792 8,316 466.47 – –
ash331GPIA 662 4,185 13.71 – –
1-Insertions 4 67 232 .04 3.71 –
2-Insertions 4 149 541 .26 32.42 –
1-Insertions 5 202 1,227 1.69 940.7 –
3-Insertions 4 281 1,046 .97 237.69 –
4-Insertions 4 475 1,795 3.02 1596.35 –
2-Insertions 5 597 3,936 18.23 – –

Table 7: NulLA, GB, AT on graphs without 4-cliques.

4.5. Hard Instances of 3-colorability

The question of whether “hard” instances of graph 3-colorability have specific, identifiable,
and systematically reproducible properties is an area of active research. Examples of graph-
theoretic properties proposed as order parameters separating “easy” instances from “hard” in-
clude 3-paths [27], minimal unsolvable subproblems [22] and frozen developments [8]. Some of
these proposed order parameters have resulted in algorithms [27] [25] [20] for generating infi-
nite families of non-3-colorable graphs conjectured (and computationally verified) to be “hard”.
In this section, we investigate a link between Nullstellensatz certificate coefficient degree and
“hard” non-3-colorable graphs.
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We begin by describing the algorithms for generating “hard” instances that we tested, which
were the minimum unsolvable graphs (MUGs) from [25], and the 4-critical graph units (4-CGUs)
from [20]. We conclude by displaying our experimental results, and comparing NulLA with the
Gröbner basis method on these instances.

4.5.1. Minimal Unsolvable (non-3-colorable) Subgraphs (MUGs)
In [25], a randomized algorithm for generating infinitely large instances of quasi-regular, 4-

critical graphs is described. These quasi-regular, 4-critical graphs are referred to by the authors
as minimal unsolvable subgraphs, where the term “unsolvable” refers to the non-3-colorability
of the graph. In this case, quasi-regular refers to graphs containing only vertices of degree three
or four, and 4-critical refers to graphs with chromatic number four such that the removal of any
edge decreases the chromatic number from four to three. The MUG generation algorithm relies
on five core 4-critical, quasi-regular minimal unsolvable graphs (displayed in Figure 4), which
are randomly chosen and then iteratively constructed using the Hajós calculus, creating larger
and larger 4-critical graphs. The Hajós calculus is a particular construction used to generate the
entire class of non-3-colorable graphs (see [14] and references therein).

(a) (b) (c)

(d) (e)

Figure 4: 4-critical, near-4-clique-free minimum unsolvable graphs (MUGs).

4.5.2. 4-critical graph units (4-CGUs)
In [20], a randomized algorithm for generating infinitely large instances of triangle-free, 4-

critical graphs is described. The 4-CGU algorithm constructs a particular 4-critical core, which
is than joined to the previous graph in the sequence using the Hajós calculus. An example of a
4-CGU is displayed in Figure 5, and the algorithm for generating a sequence of 4-CGUs follows
below.

4.5.3. Experimental Results on Hard Instances of 3-colorability
We implemented both the MUG hard instance generation algorithm, and the 4-CGU hard

instance generation algorithm. We tested both families with NulLA, and also with the Gröbner
basis method using CoCoA Lib. In [25], the MUG instances were tested with the Smallk [9] and
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Figure 5: An example of a Liu-Zhang 4-CGU.

Brélaz heuristics [3], as well as with six major constraint satisfaction problem (CSP) solvers. In
each case, exponential runtime growth was reported by the authors.

When we tested the MUG random instances using NulLA, we immediately saw correspond-
ing growth in the degree of the Nullstellensatz. We were only able to compute the degrees of the
first few certificates in the sequence; thus, it is impossible to infer a precise rate of growth for
the MUG family. Furthermore, the use of triangle equations as degree-cutters did not reduce the
degree, and we were also unable to find alternative Nullstellensatz certificates of lower degree
for these graphs. However, NulLA with branching proved extremely successful. For example,
on MUG G4, NulLA without branching took 773.16 seconds, while NulLA with branching only
took 53.48 seconds to solve 6,131 subproblems. Furthermore, NulLA with branching compared
favorably to the Gröbner bases method using CoCoA Lib: for example, MUG G7 took 7058.14
seconds using NulLA with branching, but took 19837.4 with CoCoA Lib. We report on these
results in Table 8.

NulLA without branching NulLA with branching GB

Graph n m rows cols
coeff

deg sec # of subprobs sec sec
MUG G0 10 18 198 181 1 0 1 0 0
MUG G1 20 37 178,012 329,916 4 6.33 9 .01 .05
MUG G2 30 55 1,571,328 2,257,211 4 52.83 83 .31 .46
MUG G3 39 72 6,481,224 8,072,429 4 201.96 479 2.86 5.5
MUG G4 49 90 22,054,196 24,390,486 ≥ 7 773.16 6,131 53.48 150.47
MUG G5 60 110 – – – – 67,163 946.66 1718.62
MUG G6 69 127 – – – – 103,787 2031.98 3806.17
MUG G7 78 144 – – – – 297,371 7058.14 19837.4

Table 8: Hard instances of graph 3-colorability: MUGs.

In Table 9, we report the results of the NulLA experiments on the 4-CGU hard instances of
graph 3-colorability. The 4-CGU instance generation algorithm has not been tested as thoroughly
with multiple graph coloring algorithms as compared to the MUGs in [25]. However, the 4-CGUs
were tested with Smallk, and exponential running times were reported in [20]. When we tested
the 4-CGU algorithm with NulLA, we immediately found corresponding growth in the degree of
the Nullstellensatz certificates, at a rate of growth very similar to the rate of growth in the MUG
family. We also note that the 4-CGUs are triangle-free. Thus, no reductions in degree via triangle
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degree-cutter equations are possible. Furthermore, as in the case of the MUGs, we could not find
alternative Nullstellensatz certificates for the 4-CGUs. However, branching again proved very
successful on these graphs. Finally, we note that the running times returned by CoCoA Lib in
the Gröbner basis experiments were very different between the MUG and 4-CGU families: for
example, CoCoA Lib found a Gröbner basis for the 4-CGU G7 (74 vertices and 139 edges) in
75.02 seconds, as compared with 19837.4 seconds for the MUG G7 (78 vertices and 144 edges).

NulLA without branching NulLA with branching GB

Graph n m rows cols
coeff

deg sec # of subprobs sec sec
4-CGU G0 11 20 247 221 1 0 1 0 0
4-CGU G1 20 37 177,760 329,916 4 7.35 9 .02 .1
4-CGU G2 29 54 1,306,695 1,947,902 4 82.77 329 1.18 .75
4-CGU G3 38 71 5,621,140 7,202,749 4 364.23 3,161 18.6 1.65
4-CGU G4 47 88 17,629,974 20,288,961 ≥ 7 688.35 21,161 183.01 10.46
4-CGU G5 56 105 – – – – 92,633 1167.01 13.41
4-CGU G6 65 122 – – – – 92,641 1679.15 20.82
4-CGU G7 74 139 – – – – 3,938,023 84326.9 75.02
4-CGU G8 83 156 – – – – > 5,148,710 – 570.96

Table 9: Hard instances of graph 3-colorability: 4-CGUs.

The underlying cause in the degree growth of graph 3-colorability certificates remains an
open question. It is interesting to note that of the hundreds of graphs present in the DIMACS
computational challenge, the only graphs with degrees greater than three were the MUG graphs,
specifically proposed as “hard” instances of graph 3-colorability.

5. Conclusion

We presented a general algebraic method to prove combinatorial infeasibility. We showed
that even though the worst-case known Nullstellensatz degree upper bounds are doubly exponen-
tial, in practice for useful combinatorial systems, they are often much smaller and can be used
to solve even large problem instances. Our experimental results illustrated that many bench-
mark non-3-colorable graphs have degree three certificates (β coefficients of degree one or less);
indeed, non-3-colorable graphs with coefficient certificate degrees larger than three appear to
be rare. We also showed that NulLA compares well with other algebraic methods and popular
heuristics for colorability.
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