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Abstract

Systems of polynomial equations over an algebraically-closed field K can be used to easily
model combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-
colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solution
over K. In this paper, we investigate an algorithm aimed at proving combinatorial infeasibility
based on the low degree of Hilbert’s Nullstellensatz certificates for polynomial systems arising
in combinatorics and large-scale linear algebra computations over K. We report on experiments
based on the problem of proving the non-3-colorability of graphs. We successfully solved graph
problem instances having thousands of nodes and tens of thousands of edges.

1 Introduction

It is well known that systems of polynomial equations over a field can yield small models of difficult
combinatorial problems. For example, it was first noted by D. Bayer that the 3-colorability of
graphs can be modeled via a system of polynomial equations [2]. More generally, one can easily
prove the following:

Lemma 1.1 The graph G is k-colorable if and only if the zero-dimensional system of n + m equa-
tions in n variables

xk
i − 1 = 0, for every node i ∈ V (G),

xk−1
i + xk−2

i xj + · · ·+ xk−1
j = 0, for every edge {i, j} ∈ E(G),

has a complex solution. Moreover, the number of solutions equals the number of distinct k-colorings
multiplied by k!.

Although such polynomial system encodings have been used to prove combinatorial results (see
[1, 5] and references within), they have not been widely used for practical computation. The key
issue that we investigate here is the use of such polynomial systems to effectively decide whether a
graph, or other combinatorial structure, has a certain property captured by the polynomial system
and its associated ideal. We call this the combinatorial feasibility problem. We are particularly
interested in whether this can be accomplished in practice for large combinatorial structures such
as graphs with many nodes.
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Certainly, using standard tools in computational algebra such as Gröbner bases, one can answer
the combinatorial feasibility problem by simply solving the system of polynomials. Nevertheless, it
has been shown by experiments that current Gröbner bases implementations often cannot directly
solve polynomial systems with hundreds of polynomials. This paper proposes another approach that
relies instead on the nice low degree of the Hilbert’s Nullstellensatz for combinatorial polynomial
systems and large-scale linear algebra computation.

For a hard combinatorial problem (e.g., 3-colorability of graphs), we associate a system of poly-
nomial equations J = {f1(x) = 0, f2(x) = 0, . . . , fs(x) = 0} such that the system J has a solution
if and only if the combinatorial problem has a feasible solution. The Hilbert Nullstellensatz (see
e.g.,[4]) states that the system of polynomial equations has no solution over an algebraically-closed
field K if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =

∑
βifi. Thus,

if the polynomial system J has no solution, then there exists a certificate that J has no solution,
and thus a certificate that the combinatorial problem is infeasible.

The key idea that we explore in this article is to use the Nullstellensatz to generate a finite
sequence of linear algebra systems, of increasing size, which will eventually become feasible if and
only if the combinatorial problem is infeasible. Given a system of polynomial equations, we fix
a tentative degree k for the coefficient polynomials βi in the certificates. We can decide whether
there is a Nullstellensatz certificate with coefficients of degree ≤ k by solving a system of linear
equations over the field K whose variables are in bijection with the coefficients of the monomials
of the polynomials β1, . . . , βs. If this linear system has a solution, we have found a certificate;
otherwise, we try a higher degree for the polynomials βi. This process is guaranteed to terminate
because, for a Nullstellensatz certificate to exist, the degrees of the polynomials βi cannot be more
than known bounds (see [8] and references therein). We explain the details of the algorithm, which
we call NulLA, in Section 2.

Our method can be seen as a general field variation of work by Lasserre [9], Laurent [11] and
Parrilo [14] and many others, who studied the problem of minimizing a general polynomial function
f(x) over a real algebraic variety with finitely many points. Laurent proved that when the variety
consists of the solutions of a zero-dimensional radical ideal I, one can set up the optimization
problem min{f(x) : x ∈ variety(I)} as a finite sequence of semidefinite programs terminating with
the optimal solution (see [11]). Our key new observations, that speed up practical calculations
considerably, are: (1) when dealing with feasibility, instead of optimization, linear algebra replaces
semidefinite programming, and (2) there are ways of controlling the length of the sequence of
linear-algebra systems including finite field computation instead of calculations over the reals and
the reduction of matrix size by symmetries. See Section 3 for details.

Our algorithm has good practical performance and numerical stability. Although known the-
oretical bounds for degrees of the Nullstellensatz coefficients are doubly-exponential in the size
of the polynomial system (and indeed there exist examples that attain such a large bound and
make NulLA useless in general), our experiments demonstrate that often very low degrees suffice
for systems of polynomials coming from graphs. We have implemented an exact-arithmetic linear
system solver optimized for these Nullstellensatz-based systems. We performed many experiments
using NulLA, focusing on the problem of deciding 3-colorability of graphs (note that the method
is applicable to any combinatorial problem as long as we know a polynomial system that encodes
it). We conclude with a report on these experiments in Section 4.
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2 NulLA: the Nullstellensatz Linear Algebra Algorithm

Recall that Hilbert’s Nullstellensatz states that a system of polynomial equations f1(x) = 0, f2(x) =
0, ..., fs(x) = 0, where fi ∈ K[x1, . . . , xn] and K is an algebraically closed field, has no solution in
Kn if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =

∑
βifi [4]. The

polynomial identity 1 =
∑

βifi is called a Nullstellensatz certificate. We say a Nullstellensatz
certificate has degree d if max{deg(βi)} = d.

The Nullstellensatz Linear Algebra algorithm (NulLA) takes as input a system of polynomial
equations and outputs either a yes answer, if the system of polynomial equations has a solution, or a
no answer, along with a Nullstellensatz infeasibility certificate, if the system has no solution. Before
stating the algorithm in pseudocode, let us completely clarify the connection to linear algebra.
Suppose for a moment that the polynomial system is infeasible over K and thus there must exist
a Nullstellensatz certificate. Assume further that an oracle has told us the certificate has degree
d but that we do not know the actual coefficients of the degree d polynomials βi. Thus, we have
the polynomial identity 1 =

∑
βifi. If we expand the identity into monomials, the coefficients of a

monomial are linear expressions in the coefficients of the βi. Since two polynomials over a field are
identical precisely when the coefficients of corresponding monomials are identical, from the identity
1 =

∑
βifi, we get a system of linear equations whose variables are the coefficients of the βi. Here

is an example:

Example 2.1 Consider the polynomial system x2
1 − 1 = 0, x1 + x2 = 0, x1 + x3 = 0, x2 + x3 = 0.

Clearly this system has no complex solution, and we will see that it has a Nullstellensatz certificate
of degree one.

1 = (c0x1 + c1x2 + c2x3 + c3)︸ ︷︷ ︸
β1

(x2
1 − 1)︸ ︷︷ ︸
f1

+(c4x1 + c5x2 + c6x3 + c7)︸ ︷︷ ︸
β2

(x1 + x2)︸ ︷︷ ︸
f2

+ (c8x1 + c9x2 + c10x3 + c11)︸ ︷︷ ︸
β3

(x1 + x3)︸ ︷︷ ︸
f3

+(c12x1 + c13x2 + c14x3 + c15)︸ ︷︷ ︸
β4

(x2 + x3)︸ ︷︷ ︸
f4

.

Expanding the tentative Nullstellensatz certificate into monomials and grouping like terms, we
arrive at the following polynomial equation:

1 = c0x
3
1 + c1x

2
1x2 + c2x

2
1x3 + (c3 + c4 + c8)x2

1 + (c5 + c13)x2
2 + (c10 + c14)x2

3+
(c4 + c5 + c9 + c12)x1x2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3+
(c7 + c11 − c0)x1 + (c7 + c15 − c1)x2 + (c11 + c15 − c2)x3 − c3.

From this, we extract a system of linear equations. Since a Nullstellensatz certificate is identically
one, all monomials except the constant term must be equal to zero; namely:

c0 = 0, c1 = 0, . . . , c3 + c4 + c8 = 0, c11 + c15 − c2 = 0, −c3 = 1.

By solving the system of linear equations, we reconstruct the Nullstellensatz certificate from the
solution. Indeed

1 = (−1)(x2
1 − 1) +

1
2
x1(x1 + x2)− 1

2
x1(x2 + x3) +

1
2
x1(x1 + x3)

Now, of course in general, one does not know the degree of the Nullstellensatz certificate in
advance. What one can do is to start with a tentative degree, say start at degree one, produce the
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corresponding linear system and solve it. If the system has a solution, then we have found a Null-
stellensatz certificate that the original input polynomials do not have a common root. Otherwise,
we increment the degree until we can be sure that there will not be a Nullstellensatz at all, and thus
we can conclude the system of polynomials has a solution. The number of iterations of the above
steps determines the running time of NulLA. For this, there are well-known upper bounds on the
degree of the Nullstellensatz certificate [8]. These upper bounds for the degrees of the coefficients βi

in the Hilbert Nullstellensatz certificates for general systems of polynomials are doubly-exponential
in the number of input polynomials and their degree. Unfortunately, these bounds are known to be
sharp for some purposely-constructed systems. Although this immediately says that NulLA is not
practical for arbitrary polynomial systems, we have observed in practice that polynomial systems
for combinatorial questions are extremely specialized, and the degree growth is often very slow —
enough to deal with large graphs or other combinatorial structures. Now we describe NulLA in a
general pseudocode:

********************************************
ALGORITHM (Nullstellensatz Linear Algebra (NulLA) Algorithm)
INPUT: A system of polynomial equations F = {f1(x) = 0, . . . , fs(x) = 0}
OUTPUT: yes, if F has solution, else no with a Nullstellensatz certificate of infeasibility.

Set d = 1.
Set K equal to the known upper bounds on degree of Nullstellensatz for F (see e.g., [8])
while d ≤ K do

cert ← ∑s
i=1 βifi (where βi are polynomials of degree d,

with unknowns for their coefficients).
Extract a system of linear equations from cert with columns corresponding to unknowns,

and rows corresponding to monomials.
Solve the linear system.
if the linear system is consistent then

cert ← ∑s
i=1 βifi (with unknowns in βi replaced with linear system solution values.)

print “The system of equations F is infeasible.”
return no with cert.

else
Set d := d + 1.

end if
end while
print “The system of equations F is feasible.”
return yes.

********************************************

This opens several theoretical questions. It is natural to ask about lower bounds on the degree
of the Nullstellensatz certificates. Little is known, but recently it was shown in [5], that for the
problem of deciding whether a given graph G has an independent set of a given size, a minimum-
degree Nullstellensatz certificate for the non-existence of an independent set of size greater than
α(G) (the size of the largest independent set in G) has degree equal to α(G), and it is very dense;
specifically, it contains at least one term per independent set in G. For polynomial systems coming
from logic there has also been an effort to show degree growth in related polynomial systems (see
[3, 6] and the references therein). Another question is to provide tighter, more realistic upper
bounds for concrete systems of polynomials. It is a challenge to settle it for any concrete family of
polynomial systems.
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3 Four mathematical ideas to optimize NulLA

Since we are interested in practical computational problems, it makes sense to explore refinements
and variations that make NulLA robust and much faster for concrete challenges. The main com-
putational component of NulLA is to construct and solve linear systems for finding Nullstellensatz
certificates of increasing degree. These linear systems are typically very large for reasonably-sized
problems, even for certificate degrees as low as four, which can produce linear systems with millions
of variables (see Section 4). Furthermore, the size of the linear system increases dramatically with
the degree of the certificate. In particular, the number of variables in the linear system to find a
Nullstellensatz certificate of degree d is precisely s

(
n+d

d

)
where n is the number of variables in the

polynomial system and s is the number of polynomials. Note that
(
n+d

d

)
is the number of possible

monomials of degree d or less. Also, the number of non-zero entries in the constraint matrix is
precisely M

(
n+d

d

)
where M is the sum over the number of monomials in each polynomial of the

system.

For this reason, in this section, we explore mathematical approaches for solving the linear system
more efficiently and robustly, for decreasing the size of the linear system for a given degree, and
for decreasing the degree of the Nullstellensatz certificate for infeasible polynomial systems thus
significantly reducing the size of the largest linear system that we need to solve to prove infeasibility.
Note that these approaches to reduce the degree do not necessarily decrease the predicted upper
bound on the degree of the Nullstellensatz certificate required for proving feasibility.

It is certainly possible to significantly decrease the size of the linear system by preprocessing
the given polynomial system to remove redundant polynomial equations and also by preprocessing
the linear system itself to eliminate many variables. For example, in the case of 3-coloring problems
for connected graphs, since (x3

i + 1) = (x3
j + 1) + (xi + xj)(x2

i + xixj + x2
j ), we can remove all but

one of the vertex polynomials by tracing paths through the graph. However, preprocessing alone
is not sufficient to enable us to solve some large polynomial systems.

The mathematical ideas we explain in the rest of this section can be applied to arbitrary
polynomial systems for which we wish to decide feasibility, but to implement them, one has to look
for the right structures in the polynomials.

3.1 NulLA over Finite Fields

The first idea is that, for combinatorial problems, one can often carry out calculations over finite
fields instead of unstable numerical calculations over the reals or complex numbers. We illustrate
this with the problem of deciding whether the vertices of a graph permit a proper 3-coloring. The
following encoding (a variation of [2] over the complex numbers) allows us to compute over F2,
which is robust and much faster in practice:

Lemma 3.1 The graph G is 3-colorable if and only if the zero-dimensional system of equations

x3
i + 1 = 0, for every node i ∈ V (G),

x2
i + xixj + x2

j = 0, for every edge {i, j} ∈ E(G) ,

has a solution over F2, the algebraic closure of F2.

Before we prove Lemma 3.1, we introduce a convenient notation: Let α be an algebraic element
over F2 such that α2 + α + 1 = 0. Thus, although x3

i + 1 has only one root over F2, since
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x3
i + 1 = (xi + 1)(x2

i + xi + 1), the polynomial x3
i + 1 has three roots over F2, which are 1, α and

α + 1.

Proof: If the graph G is 3-colorable, simply map the three colors to 1, α and α + 1. Clearly,
the vertex polynomial equations x3

i + 1 = 0 are satisfied. Furthermore, given an edge {i, j},
xi + xj 6= 0 since variable assignments correspond to a valid 3-coloring and adjacent vertices are
assigned different roots. This implies that x3

i +x3
j = (xi+xj)(x2

i +xixj +x2
j ) = 1+1 = 0. Therefore,

x2
i + xixj + x2

j = 0 and the edge polynomial equations are satisfied.

Conversely, suppose that there exists a solution to the system of polynomial equations. Clearly,
every vertex is assigned either 1, α or α + 1. We will show that adjacent vertices are assigned
different values. Our proof is by contradiction: Assume that two adjacent vertices i, j are assigned
the same value β. Then, 0 = x2

i +xixj +x2
j = β2 +β2 +β2 = 3β2 6= 0. Therefore, adjacent vertices

are assigned different roots, and a solution to the system corresponds directly to a valid 3-coloring.
2

We remark that this result can be extended to k-colorability and Fq, when q is relatively prime
to k. The following computational lemma will allow us to certify graph non-3-colorability very
rapidly over F2 instead of working over its algebraic closure.

Lemma 3.2 Let K be a field and K its algebraic closure. Given f1, f2, . . . , fs ∈ K[x1, . . . , xn], there
exists a Nullstellensatz certificate 1 =

∑
βifi where βi ∈ K[x1, . . . , xn] if and only if there exists a

Nullstellensatz certificate 1 =
∑

β′ifi where β′i ∈ K[x1, . . . , xn].

Proof: If there exists a Nullstellensatz certificate 1 =
∑

βifi where βi ∈ K[x1, . . . , xn], via
NulLA, construct the associated linear system and solve. Since fi ∈ K[x1, . . . , xn], the coefficients
in the linear system will consist only of values in K. Thus, solving the linear system relies only
on computations in K, and if the free variables are chosen from K instead of K, the resulting
Nullstellensatz certificate 1 =

∑
β′ifi has β′i ∈ K[x1, . . . , xn]. The reverse implication is trivial. 2

Therefore, we have the following corollary:

Corollary 3.3 A graph G is non-3-colorable if and only if there exists a Nullstellensatz certificate
1 =

∑
βifi where βi ∈ F2[x1, . . . , xn] where the polynomials fi ∈ F2[x1, . . . , xn] are as defined in

Lemma 3.1.

This corollary enables us to compute over F2, which is surprisingly fast in practice (see Section
4).

Finally, the degree of Nullstellensatz certificates necessary to prove infeasibility can be lower
over F2 than over the rationals. For example, one can prove that over the rationals, every odd-
wheel has a minimum non-3-colorability certificate of degree four [5]. However, over F2, every
odd-wheel has a Nullstellensatz certificate of degree one. Therefore, not only are the mathematical
computations more efficient over F2 as compared to the rationals, but the algebraic properties of
the certificates themselves are sometimes more favorable for computation as well.

3.2 NulLA with symmetries

Let us assume the input polynomial system F = {f1, . . . , fs} has maximum degree q and that n
is the number of variables present. As we observed in Section 2, for a given fixed positive integer
d, serving as a tentative degree for the Nullstellensatz certificate, the Nullstellensatz’s coefficients
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come from the solution of a system of linear equations. We now take a closer look at the matrix
equation MF,d y = bF,d defining the system of linear equations. First of all, the matrix MF,d has
one row per monomial xα of degree less than or equal to q + d on the n variables and one column
per polynomial of the form xδfi, i.e., the product of a monomial xδ of degree less than or equal to
d and a polynomial fi ∈ F . Thus, MF,d = (Mxα,xδfi

) where Mxα,xδfi
equals the coefficient of the

monomial xα in the polynomial xδfi. The variable y has one entry for every polynomial of the form
xδfi denoted yxδfi

, and the vector bF,d has one entry for every monomial xα of degree less than or
equal to q + d where (bF,d)xα = 0 if α 6= 0 and (bF,d)1 = 1.

Example 3.4 Consider the complete graph K4. The shape of a degree-one Hilbert Nullstellensatz
certificate over F2 for non-3-colorability is as follows:

1 = c0(x3
1 + 1)

+ (c1
12x1 + c2

12x2 + c3
12x3 + c4

12x4)(x2
1 + x1x2 + x2

2) + (c1
13x1 + c2

13x2 + c3
13x3 + c4

13x4)(x2
1 + x1x3 + x2

3)

+ (c1
14x1 + c2

14x2 + c3
14x3 + c4

14x4)(x2
1 + x1x4 + x2

4) + (c1
23x1 + c2

23x2 + c3
23x3 + c4

23x4)(x2
2 + x2x3 + x2

3)

+ (c1
24x1 + c2

24x2 + c3
24x3 + c4

24x4)(x2
2 + x2x4 + x2

4) + (c1
34x1 + c2

34x2 + c3
34x3 + c4

34x4)(x2
3 + x3x4 + x2

4)

Note that we have preprocessed the certificate by removing the redundant polynomials x3
i + 1

where i 6= 1 and removing some variables that we know a priori can be set to zero. As we explained
in Section 2, this gives a linear system of equations in the variables c0 and ck

ij (note that k is
a superscript and not an exponent). This linear system can be captured as the matrix equation
MF,1c = bF,1 where the matrix MF,1 is as follows.

c0 c1
12 c2

12 c3
12 c4

12 c1
13 c2

13 c3
13 c4

13 c1
14 c2

14 c3
14 c4

14 c1
23 c2

23 c3
23 c4

23 c1
24 c2

24 c3
24 c4

24 c1
34 c2

34 c3
34 c4

34

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3

1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x3 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x4 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x1x

2
2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

x1x2x3 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x1x
2
3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

x1x3x4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
x1x

2
4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

x3
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

x2
2x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

x2
2x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

x2x
2
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
x2x

2
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x2
3x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

x3x
2
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

x3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

Certainly the matrix MF,d is rather large already for small systems of polynomials. The main
point of this section is how to reduce the size of the matrix by using a group action on the variables,
e.g., using symmetries or automorphisms in a graph. Suppose we have a finite permutation group
G acting on the variables x1, . . . , xn. Clearly G induces an action on the set of monomials with
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variables x1, x2, . . . , xn of degree t. We will assume that the set F of polynomials is invariant under
the action of G, i.e., g(fi) ∈ F for each fi ∈ F . Denote by xδ, the monomial xδ1

1 xδ2
2 . . . xδn

n , a
monomial of degree δ1 +δ2 + · · ·+δn. Denote by Orb(xα), Orb(xδfi) the orbit under G of monomial
xα and, respectively, the orbit of the polynomial obtained as the product of the monomial xδ and
the polynomial fi ∈ F .

We now introduce a new matrix equation M̄F,d,G ȳ = b̄F,d,G. The rows of the matrix M̄F,d,G are
indexed by the orbits of monomials Orb(xα) where xα is a monomial of degree less than or equal to
q + d, and the columns of M̄F,d,G are indexed by the orbits of polynomials Orb(xδfi) where fi ∈ F
and the degree of the monomial xδ less than or equal to d. Then, let M̄F,d,G = (M̄Orb(xα),Orb(xδfi))
where

M̄Orb(xα),Orb(xδfi) =
∑

xγfj∈Orb(xδfi)

Mxα,xγfj .

Note that Mxα,xδfi
= Mg(xα),g(xδfi) for all g ∈ G meaning that the coefficient of the monomial xα in

the polynomial xδfi is the same as the coefficient of the monomial g(xα) in the polynomial g(xδfi).
So, ∑

xγfj∈Orb(xδfi)

Mxα,xγfj =
∑

xγfj∈Orb(xδfi)

Mxd,xγfj
for all xd ∈ Orb(xα),

and thus, M̄Orb(xα),Orb(xδfi) is well-defined. We call the matrix M̄F,d,G the orbit matrix. The
variable ȳ has one entry for every polynomial orbit Orb(xδfi) denoted ȳOrb(xδfi). The vector b̄F,d

has one entry for every monomial orbit Orb(xα), and let (b̄F,d)Orb(xα) = (bF,d)xα = 0 if α 6= 0 and
(b̄F,d)Orb(1) = (bF,d)1 = 1. The main result in this section is that, under some assumptions, the
system of linear equations M̄F,d,G ȳ = b̄F,d,G has a solution if and only if the larger system of linear
equations MF,d y = bF,d has a solution.

Theorem 3.5 Let K be an algebraically-closed field. Consider a polynomial system F = {f1, . . . , fs}
⊂ K[x1, . . . , xn] and a finite group of permutations G ⊂ Sn. Let MF,d, M̄F,d,G denote the matrices
defined above. Suppose that the polynomial system F is closed under the action of the group G
permuting the indices of variables x1, . . . , xn. Suppose further that the order of the group |G| and
the characteristic of the field K are relatively prime. The degree d Nullstellensatz linear system
of equations MF,d y = bF,d has a solution over K if and only if the system of linear equations
M̄F,d,G ȳ = b̄F,d,G has a solution over K.

Proof: To simplify notation, let M = MF,d, b = bF,d, M̄ = M̄F,d,G and b̄ = b̄F,d,G. First, we show
that if the linear system My = b has a solution, then there exists a symmetric solution y of the
linear system My = b meaning that yxδfi

is the same for all xδfi in the same orbit, i.e., yxγfj
= yxδfi

for all xγfj ∈ Orb(xδfi). The converse is also trivially true.

Since the rows and columns of the matrix M are labeled by monomials xα and polynomials xδfi

respectively, we can also think of the group G as acting on the matrix M , permuting the entries of
M , where g(M)g(xα),g(xδfi) = Mxα,xδfi

. Moreover, since Mxα,xδfi
= Mg(xα),g(xδfi) for all g ∈ G, we

must have g(M) = M , so the matrix M is invariant under the action of the group G. Also, since
the entries of the variable y are labeled by polynomials of the form xαfi, we can also think of the
group G as acting on the vector y, permuting the entries of the vector y, i.e., applying g ∈ G to y
gives the permuted vector g(y) where g(y)g(xδfi) = yxδfi

. Similarly, G acts on the vector b, and in
particular, g(b) = b. Next, we show that if My = b, then Mg(y) = b for all g ∈ G. This follows
since

My = b ⇒ g(My) = g(b) ⇒ g(M)g(y) = b ⇒ Mg(y) = b

8



for all g ∈ G. Now, let

y′ =
1
|G|

∑

g∈G

g(y).

Note we need that |G| is relatively prime to the characteristic of the field K so that |G| is invertible.
Then,

My′ =
1
|G|

∑

g∈G

Mg(y) =
1
|G|

∑

g∈G

b = b,

so y′ is a solution. Also, y′
xδfi

= 1
|G|

∑
g∈G yg(xδfi), so y′

xδfi
= y′xγfj

for all xγfj ∈ Orb(xδfi).
Therefore, y′ is a symmetric solution as required.

Now, assume that there exists a solution of My = b. By the above argument, we can assume
that the solution is symmetric, i.e., yxδfi

= yxγfj where g(xδfi) = xγfj for some g ∈ G. From this
symmetric solution of My = b, we can find a solution of M̄ȳ = b̄ by setting

ȳOrb(xδfi) = yxδfi
.

To show this, we check that (M̄ȳ)Orb(xα) = b̄Orb(xα) for every monomial xα.

(M̄ȳ)Orb(xα) =
∑

all Orb(xδfi)

M̄xα,Orb(xδfi) ȳOrb(xδfi)

=
∑

all Orb(xδfi)


 ∑

xγfj∈Orb(xδfi)

Mxα,xγfj


 ȳOrb(xδfi)

=
∑

all Orb(xδfi)


 ∑

xγfj∈Orb(xδfi)

Mxα,xγfj yxγfj




=
∑

all xδfi

Mxα,xδfi
yxδfi

= (My)xα .

Thus, (M̄ȳ)Orb(xα) = b̄Orb(xα) since (My)xα = bxα = b̄Orb(xα).

Next, the converse is easier. Remember that the columns of M̄ are labeled by orbits. If there
is a solution for M̄ȳ = b̄, then to recover a solution of My = b, we set

yxδfi
= ȳOrb(xδfi).

Note that y is a symmetric solution. Using the same calculation as above, we have that (My)xα =
(M̄ȳ)Orb(xα), and thus, My = b. 2

Example 3.6 (Continuation of Example 3.4) Now consider the action of the symmetry group
G generated by the cycle (2,3,4) (a cyclic group of order three). The permutation of variables
permutes the monomials and yields a matrix MF,1,G. We have now grouped together monomials
and terms within orbit blocks in the matrix below. The blocks will be later replaced by a single
entry, shrinking the size of the matrix.
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c0 c1
12 c1

13 c1
14 c2

12 c3
13 c4

14 c3
12 c4

13 c2
14 c4

12 c2
13 c3

14 c1
23 c1

34 c1
24 c2

23 c3
34 c4

24 c2
24 c3

23 c4
34 c2

34 c3
24 c4

23

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x2 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x3 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x2

1x4 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1x

2
2 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

x1x
2
3 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

x1x
2
4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

x1x2x3 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
x1x2x4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x1x3x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

x3
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

x3
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

x3
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

x2
2x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

x2
3x4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

x2x
2
4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

x2
2x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

x2x
2
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

x3x
2
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

The action of the symmetry group generated by the cycle (2,3,4) yields an orbit matrix M̄F,q,G

of about a third the size of the original one:

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0
Orb(x3

1) 1 3 0 0 0 0 0 0 0
Orb(x2

1x2) 0 1 1 1 1 0 0 0 0
Orb(x1x

2
2) 0 1 1 0 0 2 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0
Orb(x3

2) 0 0 1 0 0 0 1 1 0
Orb(x2

2x3) 0 0 0 1 0 0 1 1 1
Orb(x2

2x4) 0 0 0 0 1 0 1 1 1
Orb(x2x3x4) 0 0 0 0 0 0 0 0 3

(mod 2)≡

c̄0 c̄1
12 c̄2

12 c̄3
12 c̄4

12 c̄1
23 c̄2

23 c̄2
24 c̄2

34

Orb(1) 1 0 0 0 0 0 0 0 0
Orb(x3

1) 1 1 0 0 0 0 0 0 0
Orb(x2

1x2) 0 1 1 1 1 0 0 0 0
Orb(x1x

2
2) 0 1 1 0 0 0 0 0 0

Orb(x1x2x3) 0 0 0 1 1 1 0 0 0
Orb(x3

2) 0 0 1 0 0 0 1 1 0
Orb(x2

2x3) 0 0 0 1 0 0 1 1 1
Orb(x2

2x4) 0 0 0 0 1 0 1 1 1
Orb(x2x3x4) 0 0 0 0 0 0 0 0 1

If |G| is not relatively prime to the characteristic of the field K, then it is still true that, if
M̄y = b̄ has a solution, then My = b has a solution. Thus, even if |G| is not relatively prime to
the characteristic of the field K, we can still prove that the polynomial system F is infeasible by
finding a solution of the linear system M̄y = b̄.

3.3 Reducing the Nullstellensatz degree by adding polynomials

We have discovered that by adding certain valid but redundant polynomial equations to the system
of polynomial equations described in Lemma 3.1, we have been able to decrease the degree of
the Nullstellensatz certificate necessary to prove infeasibility. A valid but redundant polynomial
equation is any polynomial equation g(x) = 0 that is true for all the zeros of the polynomial
system f1(x) = 0, ..., fs(x) = 0, i.e., g ∈ √I, the radical ideal of I, where I is the ideal generated
by f1, ..., fs. Technically, we only require that g(x) = 0 is true for at least one of zeros of the
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polynomial system f1(x) = 0, ..., fs(x) = 0 if a zero exists. If adding an equation reduces the
degree, we refer to the equation as a degree-cutter.

For example, for 3-coloring, consider a triangle described by the vertices {x, y, z}. Whenever a
triangle appears as a subgraph in a graph, the vertices of the triangle must be colored differently.
We capture that additional requirement with the equation

x2 + y2 + z2 = 0, (1)

which is satisfied if and only if x 6= y 6= z 6= x since x, y and z are third roots of unity. Note that the
equation x+ y + z = 0 also implies x 6= y 6= z 6= x, but we use the equation x2 + y2 + z2 = 0, which
is homogeneous of degree two, because the edge equations from Lemma 3.1 are also homogeneous
of degree two, and this helps preserve the balance of monomials in the final certificate.

Consider the Koester graph [7] from Figure 1, a graph with 40 vertices and 80 edges. This
graph has chromatic number four, and a corresponding non-3-colorability certificate of degree four.
The size after preprocessing of the associated linear system required by NulLA to produce this
certificate was 8, 724, 468× 10, 995, 831 and required 5 hours and 17 minutes of computation time.

Figure 1: Koester graph [7]

When we inspect the Koester graph in Figure 1, we can see that this graph contains 25 triangles.
When we add these additional 25 equations to the system of polynomial equations describing this
graph, the degree of the Nullstellensatz certificate drops from four to one, so now, with the addition
of the 25 triangle equations, NulLA only needs to solve a 4, 626 × 4, 346 linear system to produce
a degree one certificate, which took 0.2 seconds of computation time.

These degree-cutter equations for 3-colorability (1) can be extended to k-colorability. A (k−1)-
clique implies that all nodes in the clique have a different color. Then, given the (k−1)-clique with
the vertices {x1, x2, ..., xk−1}, the equation xk−1

1 + xk−1
2 + ... + xk−1

k−1 = 0 is valid. We conjecture
that these equations may also decrease the minimal degree of the Nullstellensatz certificate if one
exists.

The degree-cutter equations for 3-colorability (1) are not always sufficient to reduce the de-
gree of the Nullstellensatz. Consider the graph from Figure 2. Using only the polynomials from
Lemma 3.1, the graph in Figure 2 has a degree four certificate. The graph contains three tri-
angles: {1, 2, 6}, {2, 5, 6} and {2, 6, 7}. In this case, after adding the degree-cutter equations for
3-colorability (1) the degree of the minimal Nullstellensatz certificate for this graph is still four.

The difficulty with the degree-cutter approach is in finding candidate degree-cutters and in
determining how many of the candidate degree-cutters to add to the system. There is an obvious
trade-off here between the time spent finding degree-cutters and the time penalty incurred by

11



1 2

34

5
6

7

8

910

11

12

Figure 2: A graph with a degree four certificate.

adding the degree-cutters (thus increasing the size of the linear system that must be solved) and
the benefit of reducing the degree of the Nullstellensatz certificate.

3.4 Alternative Nullstellensätze

There is another approach we have found to decrease the minimal degree of the Nullstellensatz
certificate. We now introduce the idea of an alternative Nullstellensatz, which follows from the
Hilbert Nullstellensatz.

Corollary 3.7 (Alternative Nullstellensatz) A system of polynomial equations f1(x) = 0, . . . ,
fs(x) = 0 where fi ∈ K[x1, . . . , xn] and K is an algebraically closed field has no solution in Kn if and
only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] and g ∈ K[x1, ..., xn] such that g =

∑
βifi

and the system f1(x) = 0, . . . , fs(x) = 0 and g(x) = 0 has no solution.

The Hilbert Nullstellensatz is a special case of this alternative Nullstellensatz where g(x) = 1. We
can easily adapt the NulLA algorithm to use this alternative Nullstellensatz given the polynomial
g. Here, the polynomial g determines the constant terms of the linear system that we need to solve
to find a certificate of infeasibility. The idea here is that the minimal degree of the alternative Null-
stellensatz certificate is sometimes smaller than the minimal degree of the ordinary Nullstellensatz
certificate.

In the case of 3-colorability (and also more generally k-colorability), we may choose g as any
non-trivial monomial since g(x) = 0 implies that xi = 0 for some i = 1, ..., n, which contradicts
that x3

i − 1 = 0. For the graph in Figure 2, if we choose g(x) = x1x8x9, then the minimal degree
of the Nullstellensatz certificate is now one. The actual certificate is as follows:

x1x8x9 = (x1 + x2)(x2
1 + x1x2 + x2

2) + (x4 + x9 + x12)(x2
1 + x1x4 + x2

4)

+ (x1 + x4 + x8)(x2
1 + x1x12 + x2

12) + (x2 + x7 + x8)(x2
2 + x2x3 + x2

3)

+ (x5)(x2
2 + x2x5 + x2

5) + (x3 + x8)(x2
2 + x2x7 + x2

7) + (x2 + x7 + x8)(x2
3 + x3x8 + x2

8)

+ (x1 + x4 + x10)(x2
4 + x4x9 + x2

9) + (x10 + x12)(x2
4 + x4x11 + x2

11)

+ (x2 + x10)(x2
5 + x5x6 + x2

6) + (x5 + x10)(x2
5 + x5x9 + x2

9)

+ (x2 + x10)(x2
6 + x6x7 + x2

7) + (x5 + x7)(x2
6 + x6x10 + x2

10)

+ (x2 + x3 + x12)(x2
7 + x7x8 + x2

8) + (x10 + x12)(x2
7 + x7x11 + x2

11) + (x1)(x2
8 + x8x9 + x2

9)

+ (x1 + x7 + x8)(x2
8 + x8x12 + x2

12) + (x4 + x5)(x2
9 + x9x10 + x2

10)

+ (x4 + x7)(x2
10 + x10x11 + x2

11) + (x4 + x7)(x2
11 + x11x12 + x2

12) + (x5 + x7)(x2
2 + x2x6 + x2

6)

+ (x8 + x9) (x2
1 + x2

2 + x2
6)︸ ︷︷ ︸

degree-cutter

+(x9) (x2
2 + x2

5 + x2
6)︸ ︷︷ ︸

degree-cutter

+(x8) (x2
2 + x2

6 + x2
7)︸ ︷︷ ︸

degree-cutter

.
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Note that we used the degree-cutter equations (1) to obtain a certificate of degree one. Also,
note that the monomial x1x8x9 was not the only monomial we found that gave a Nullstellensatz
certificate of degree one.

The apparent difficulty in using the alternative Nullstellensatz approach is in choosing g(x). One
solution to this problem is to try and find a Nullstellensatz certificate for a set of g(x) including
g(x) = 1. For example, for the graph in Figure 2, we tried to find a certificate of degree one for the
set of all possible monomials of degree 3. Since choosing different g(x) only means changing the
constant terms of the linear system in NulLA (the coefficients remain the same), solving for a set
of g(x) can be accomplished efficiently.

4 Experimental results

In this section, we present our experimental results. To summarize, almost all of the graphs tested
by NulLA had degree one certificates. This algebraic property, coupled with our ability to compute
over F2, allowed us to prove the non-3-colorability of graphs with over a thousand nodes.

4.1 Methods

Our computations were performed on machines with dual Opteron nodes, 2 GHz clock speed, and
12 GB of RAM. No degree-cutter equations or alternative Nullstellensatz certificates were used.
We preprocessed the linear systems by removing redundant vertex polynomials via (x3

i + 1) =
(x3

j + 1) + (xi + xj)(x2
i + xixj + x2

j ). Since the graphs we tested are connected, we can remove all
but one of the vertex polynomial equations by tracing paths from an arbitrarily selected “origin”
vertex. We also eliminated unnecessary monomials from the system.

4.2 Test cases

We tested the following graphs:

1. DIMACS: The graphs from the DIMACS Computational Challenge (1993, 2002) are de-
scribed in detail at http://mat.gsia.cmu.edu/COLORING02/. This set of graphs is the stan-
dard benchmark for graph coloring algorithms. We tested every DIMACS graph whose asso-
ciated NulLA matrix could be instantiated within 12 GB of RAM. For example, we did not
test C4000.5.clq, which has 4,000 vertices and 4,000,268 edges, yielding a degree one NulLA
matrix of 758 million non-zero entries and 1 trillion columns.

2. Mycielski: The Mycielski graphs are a classic example from graph theory, known for the
gap between their clique and chromatic number. The Mycielski graph of order k is a triangle-
free graph with chromatic number k. The first few instances and the algorithm for their
construction can be seen at http://mathworld.wolfram.com/MycielskiGraph.html.

3. Kneser: The nodes of the Kneser-(t, r) graph are represented by the r-subsets of {1, . . . , t},
and two nodes are adjacent if and only if their subsets are disjoint.

4. Random: We tested random graphs in 16 nodes with an edge probability of .27. This
probability was experimentally selected based on the boundary between 3-colorable and non-
3-colorable graphs, and is explained in detail in Section 4.3.
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4.3 Results

In this section, we present our experimental results on graphs with and without 4-cliques. We
also compare NulLA to other graph coloring algorithms, point out certain properties of NulLA-
constructed certificates, and conclude with tests on random graphs. Suprisingly, all but four of the
DIMACS, Mycielski and Kneser graphs tested with NulLA have degree one certificates.

The DIMACS graphs are primarily benchmarks for graph k-colorability, and thus contain many
graphs with large chromatic number. Such graphs often contain 4-cliques. Although testing for
graph 3-colorability is well-known to be NP-Complete, there exist many efficient (and even trivial),
polynomial-time algorithms for finding 4-cliques in a graph. Thus, we break our computational
investigations into two tables: Table 1 contains graphs without 4-cliques, and Table 4 contains
graphs with 4-cliques (considered “easy” instances of 3-colorability). For space considerations, we
only display small, medium and large graphs for each family.

Graph vertices edges rows cols deg sec
m7 (Mycielski 7) 95 755 64,281 71,726 1 .46
m9 (Mycielski 9) 383 7,271 2,477,931 2,784,794 1 268.78

m10 (Mycielski 10) 767 22,196 15,270,943 17,024,333 1 14835
(8, 3)-Kneser 56 280 15,737 15,681 1 .07
(10, 4)-Kneser 210 1,575 349,651 330,751 1 3.92
(12, 5)-Kneser 792 8,316 7,030,585 6,586,273 1 466.47
(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333 1 216105

ash331GPIA.col 662 4,185 3,147,007 2,770,471 1 13.71
ash608GPIA.col 1,216 7,844 10,904,642 9,538,305 1 34.65
ash958GPIA.col 1,916 12,506 27,450,965 23,961,497 1 90.41
1-Insertions 5.col 202 1,227 268,049 247,855 1 1.69
2-Insertions 5.col 597 3,936 2,628,805 2,349,793 1 18.23
3-Insertions 5.col 1,406 9,695 15,392,209 13,631,171 1 83.45

Table 1: Graphs without 4-cliques.

We also compared our method to well-known graph coloring heuristics such as DSATUR and
Branch-and-Cut [10]. These heuristics return bounds on the chromatic number. In Table 2 (data
taken from [10]), we display the bounds returned by Branch-and-Cut (B&C) and DSATUR, respec-
tively. In the case of these graphs, NulLA determined non-3-colorability very rapidly (establishing a
lower bound of four), while the two heuristics returned lower bounds of three and two, respectively.
Thus, NulLA returned a tighter lower bound on the chromatic number than B&C or DSATUR.

B&C DSATUR NulLA
Graph vertices edges lb up lb up deg sec

4-Insertions 3.col 79 156 3 4 2 4 1 0
3-Insertions 4.col 281 1,046 3 5 2 5 1 1
4-Insertions 4.col 475 1,795 3 5 2 5 1 3
2-Insertions 5.col 597 3,936 3 6 2 6 1 12
3-Insertions 5.col 1,406 9,695 3 6 2 6 1 83

Table 2: NulLA compared to Branch-and-Cut and DSATUR.

However, not all of the DIMACS challenge graphs had degree one certificates. We were not
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able to produce certificates for mug88 1.col, mug88 25.col, mug100 1.col or mug100 25.col, even
when using degree-cutters and searching for alternative Nullstellensatz certificates. When testing
for a degree four certificate, the smallest of these graphs (mug88 1.col with 88 vertices and 146
edges) yielded a linear system with 1,170,902,966 non-zero entries and 390,340,149 columns. A
matrix of this size is not computationally tractable at this time.

Recall that the Nullstellensatz certificates returned by NulLA consist of a single vertex polyno-
mial (via preprocessing), and edge polynomials describing either the original graph in its entirety,
or a non-3-colorable subgraph from the original graph. For example, if the graph contains a 4-
clique as a subgraph, often the Nullstellensatz certificate will only display the edges contained in
the 4-clique. Thus, we say that NulLA isolates a non-3-colorable subgraph from the original graph.
The size difference between these subgraphs and the input graphs is often dramatic, as shown in
Table 3.

Graph vertices edges
subgraph

vertices
subgraph

edges
miles1500.col 128 10,396 6 10

hamming8-4.clq 256 20,864 19 33
m10 (Mycielski 10) 767 22,196 11 20

(12, 5)-Kneser 792 8,316 53 102
dsjc1000.1.col 1,000 49,629 15 24

ash608GPIA.col 1,216 7,844 23 44
3-Insertions 5.col 1,406 9,695 56 110
ash958GPIA.col 1,916 12,506 24 45

Table 3: Comparing the original graph to the non-3-colorable subgraph expressed by the certificate.

An overall analysis of these computational experiments shows that NulLA performs best on
sparse graphs. For example, the 3-Insertions 5.col graph (with 1,406 nodes and 9,695 edges)
runs in 83 seconds, while the 3-FullIns 5.col graph (with 2,030 nodes and 33,751 edges) runs in
15027 seconds. Another example is p hat700-2.clq (with 700 nodes and 121,728 edges) and
will199GPIA.col (with 701 nodes and 7,065 edges). NulLA proved the non-3-colorability of
will199GPIA.col in 35 seconds, while p hat700-2.clq took 30115 seconds.

Finally, as an informal measure of the distribution of degree one certificates, we generated
random graphs of 16 nodes with edge probability .27. We selected this probability because it
lies on the boundary between feasible and infeasible instances. In other words, graphs with edge
probability less than .27 were almost always 3-colorable, and graphs with edge probability greater
than .27 were almost always non-3-colorable. However, we experimentally found that an edge
probability of .27 created a distribution that was almost exactly half and half. Of 100 trials, 48
were infeasible. Of those 48 graphs, 40 had degree one certificates and 8 had degree four certificates.
Of these remaining 8 instances, we were able to find degree one certificates for all 8 by adding degree-
cutters or by finding alternative Nullstellensatz certificates. This tentative measure indicates that
non-3-colorability certificates of degrees greater than one may be rare.

5 Conclusion

We presented a general algebraic method to prove combinatorial infeasibility. We show that even
though the worst-case known Nullstellensatz degree upper bounds are doubly-exponential, in prac-
tice for combinatorial systems, they are much smaller and can be used to solve even large problem
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Graph vertices edges rows cols deg sec
miles500.col 128 2,340 143,640 299,521 1 1.35
miles1000.col 128 6,432 284,042 823,297 1 7.52
miles1500.col 128 10,396 349,806 1,330,689 1 24.23
mulsol.i.5.col 197 3,925 606,959 773,226 1 6
zeroin.i.1.col 211 4,100 643,114 865,101 1 6

queen16 16.col 256 12,640 1,397,473 3,235,841 1 106
hamming8-4.clq 256 20,864 2,657,025 5,341,185 1 621.1
school1 nsh.col 352 14,612 4,051,202 5,143,425 1 210.74
MANN a27.clq 378 70,551 9,073,144 26,668,279 1 9809.22
brock400 4.clq 400 59,765 10,579,085 23,906,001 1 4548.59

gen400 p0.9 65.clq 400 71,820 10,735,248 28,728,001 1 9608.85
le450 5d.col 450 9,757 4,168,276 4,390,651 1 304.84
fpsol2.i.1.col 496 11,654 4,640,279 57,803,85 1 93.8
C500.9.clq 500 112,332 20,938,304 56,166,001 1 72752
homer.col 561 3,258 1,189,065 1,827,739 1 8

p hat700-2.clq 700 121,728 48,301,632 85,209,601 1 30115
will199GPIA.col 701 7,065 5,093,201 4,952,566 1 35

inithx.i.1.col 864 18,707 13,834,511 16,162,849 1 1021.76
qg.order30.col 900 26,100 23,003,701 23,490,001 1 13043

wap06a.col 947 43,571 37,703,503 41,261,738 1 1428
dsjc1000.1.col 1,000 49,629 45,771,027 49,629,001 1 2981.91
5-FullIns 4.col 1,085 11,395 13,149,910 12,363,576 1 200.09
3-FullIns 5.col 2,030 33,751 70,680,086 68,514,531 1 15027.9 ≈ 4h

Table 4: Graphs with 4-cliques.

instances. Our experimental results illustrated that many benchmark non-3-colorable graphs have
degree one certificates; indeed, non-3-colorable graphs with degrees larger than one may be rare.
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