Topology. SM464. HW 5.

Due: Friday, October/31.

Subject: Topological Spaces.

(1) Let $X = \mathbb{R}$. Let \mathcal{F} be the family of sets $U \subset \mathbb{R}$ such that for every $x \in U$ there exists an interval $[a, b)$ such that $x \in [a, b) \subset U$. (a) Show that \mathcal{F} is a topology. \textit{Hint: Check the axioms. You can take for granted that $\emptyset \in \mathcal{F}$.} (b) Show that \mathcal{F} is stronger than the standard topology (generated by open intervals) on \mathbb{R}. \textit{Hint: Show that if U is a set open in the standard topology, then $U \in \mathcal{F}$.}

(2) Let X, Y, Z be topological spaces. Suppose that $X \cong Y$ (being homeomorphic) and $Y \cong Z$. Prove that $X \cong Z$. \textit{Hint: let $f : X \to Y$ and $g : Y \to Z$ be homeomorphisms. Show that their composition is a homeomorphism between X and Z.}

(3) Prove that $(-1, 1)$ is homeomorphic to \mathbb{R}. Use $f(x) = \arctan(\pi x/2)$.

(4) Let $X = \{a, b, c, d\}$. Describe the topology generated by the family $B = \{\{a\}, \{c, d\}, \{d\}\}$.
(5) Let \(X = \mathbb{R} \) be endowed with the standard topology. Give two equivalent definitions/statements for each of the following:

(5-a) \(U \subset \mathbb{R} \) is an open set;
(5-b) \(U \subset \mathbb{R} \) is not an open set.

(6) Let \(X = \mathbb{N} \). Set \(B = \{\{1\}, \{1,3\}, \{1,3,5\}, \{1,3,5,7\}, \ldots\} \). Describe the smallest topology containing the family \(B \). Hint: Consider finite intersections and arbitrary unions of elements of \(B \), add \(\emptyset \) and \(X \).