REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
Compiled by Michael Hoffman
The list is in (approximate) chronological order within each category.
While the categorization of some works is a bit arbitrary, I have
generally tried to place each one in the most inclusive category that
seemed appropriate.
This list is revised regularly. Report errors and omissions to
meh@usna.edu.
Author index
A. DOUBLE HARMONIC SERIES
- P. H. Fuss (ed.), Correspondance
Mathématique et Physique de quelques célèbres
Géomètres (Tome 1), St. Petersburg, 1843.
- L. Euler, `Meditationes circa singulare serierum
genus,' Novi Comm. Acad. Sci. Petropol. 20 (1776), 140-186.
Reprinted in Opera Omnia, ser. I, vol. 15, B. G. Teubner, Berlin,
1927, pp. 217-267.
- N. Nielsen, Die Gammafunktion, Chelsea,
New York, 1965.
Reprint of Handbuch der Theorie der Gammafunktion (1906) and
Theorie der Integrallogarithmus und verwandter Transzendenten (1906).
- F. V. Atkinson, `The mean value of the Riemann
zeta function,' Acta Math. 81 (1949), 353-376.
- L. Tornheim, `Harmonic double series,' Amer. J. Math.
72 (1950), 303-314.
- G. T. Williams, `A new method of evaluating
ζ(2n),' Amer. Math. Monthly 60 (1953), 19-25.
- P. F. Jordan, `Infinite sums of psi functions,'
Bull. Amer. Math. Soc. 79 (1973), 681-683.
- T. M. Apostol and T. H. Vu, `Dirichlet series
related to the Riemann zeta function,' J. Number Theory 19 (1984),
85-102.
- M. V. Subbarao and R. Sitaramachandrarao,
`On some infinite series of L. J. Mordell and their analogues',
Pacific J. Math. 119 (1985), 245-255.
- D. Zagier, `Periods of modular forms, traces of
Hecke operators, and multiple zeta values,' in Research into automorphic
forms and L functions (Kyoto, 1992), Sūrikaisekikenyūsho
Kōkyūroku 843 (1993), pp. 162-170.
- R. E. Crandall and J. P. Buhler, `On the evaluation
of Euler sums,'
Experiment. Math. 3 (1994), 275-285.
- D. Borwein and J. M. Borwein, `On an intriguing
integral and some series related to ζ(4),'
Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
- L-C. Shen, `Remarks on some integrals and
series involving the Stirling numbers and ζ(n)',
Trans. Amer. Math. Soc. 347 (1995), 1391-1399.
- J. G. Huard, K. S. Williams, and N-Y. Zhang,
`On Tornheim's double series,' Acta Arithmetica 75 (1996), 105-117.
- M-A. Coppo, `Sur les sommes d'Euler divergentes,'
Expositiones Mathematicae 18 (2000), 297-308.
- Wenchang Chu, `Symmetric functions and the Riemann
zeta series,' Indian J. Pure Appl. Math. 31 (2000), 1677-1689.
- A. Basu and T. M. Apostol, `A new method of
investigating Euler sums,' Ramanujan J. 4 (2000), 397-419.
- K. N. Boyadzhiev, `Evaluation of Euler-Zagier sums,'
Internat. J. Math. Math. Sci. 27 (2001), 407-412.
- K. N. Boyadzhiev, `Consecutive evaluation of Euler
sums,'
Internat. J. Math. Math. Sci. 29 (2002), 555-561.
- H. Tsumura, `On some combinatorial relations for
Tornheim's double series,' Acta Arithmetica 105 (2002), 239-252.
- T. M. Rassias and H. M. Srivastava, `Some classes
of infinite series associated with the Riemann zeta and polygamma functions
and generalized harmonic numbers,' Appl. Math. and Comp. 131 (2002),
593-605.
- M. W. Coffey, `On some log-cosine integrals related
to ζ(3), ζ(4), and ζ(6),' J. Comp. Appl. Math. 153
(2003), 205-215.
- H. Tsumura, `On alternating analogues of Tornheim's
double series,'
Proc. Amer. Math. Soc. 131 (2003), 3633-3641.
- H. Tsumura, `Evaluation formulas for Tornheim's
type of alternating double series,'
Math. Comp. 73 (2004), 251-258.
- M. Jung, Y. J. Cho and J. Choi, `Euler sums
evaluatable from integrals,' Commun. Korean Math. Soc. 19 (2004),
545-555.
- H. Tsumura, `On evaluation formulas for double
L-values,' Bull. Aust. Math. Soc. 70 (2004), 213-221.
- D. Terhune, `Evaluation of double L-values,'
J. Number Theory 105 (2004), 275-301.
- R. Masri, `The Herglotz-Zagier function, double
zeta values, and values of L-series,' J. Number Theory 106
(2004), 219-237.
- K. Matsumoto, `Functional equations for double
zeta-functions,' Math. Proc. Cambrige Philos. Soc. 136 (2004), 1-7.
- M. W. Coffey, `On one-dimensional digamma
and polygamma series related to the evaluation of Feynman diagrams,'
J. Comp. Appl. Math. 183 (2005), 84-100.
- D. M. Bradley, `A q-analog of Euler's
decomposition formula for the double zeta function,'
Internat. J. Math. Math. Sci. 2005 (2005), 3453-3458.
- H. Tsumura, `Certain functional relations for
the double harmonic series related to the double Euler numbers,'
J. Aust. Math. Soc. 79 (2005), 319-333.
- S. Kanemitsu, Y. Tanigawa, and M. Yoshimoto,
`Convolution of multiple zeta values,' J. Math. Soc. Japan 57 (2005),
1167-1177.
- O. Espinosa and V. H. Moll, `The evaluation of
Tornheim double sums, Part I,' J. Number Theory 116 (2006), 200-229;
preprint CA/0505647.
- K-W. Chen and M. Eie, `Explicit evaluations of
extended Euler sums,' J. Number Theory 117 (2006), 31-52.
- D. Terhune, `Evaluations of a class of double
L-values,'
Proc. Amer. Math. Soc. 134 (2006), 1881-1889.
- H. Tsumura, `On some functional relations between
Mordell-Tornheim double L-functions and Dirichlet L-functions,'
J. Number Theory 120 (2006), 161-178.
- H. Gangl, M. Kaneko, D. Zagier, `Double zeta values
and modular forms,' in Automorphic Forms and Zeta Functions,
S. Böcherer et. al. (eds.), World Scientific, Singapore,
2006, pp. 71-106;
preprint MPIM2005-96.
- T. Nakamura, `A functional relation for the
Tornheim zeta function,' Acta Arithmetica 125 (2006), 257-263.
- I. Kiuchi and Y. Tanigawa, `Bounds for double
zeta-functions,' Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006),
445-464.
- H. Tsumura, `On certain polylogarithmic double
series,' Arch. Math. (Basel) 88 (2007), 42-51
- H. Tsumura, `On functional relations between
the Mordell-Tornheim double zeta functions and the Riemann zeta function,'
Math. Proc. Cambridge Philos. Soc. 142 (2007), 395-405.
- J. M. Borwein, `Hilbert's inequality and Witten's
zeta-function,' Amer. Math. Monthly 115 (2008), 125-137.
- M. W. Coffey, `On a three-dimensional symmetric
Ising tetrahedron and contributions to the theory of the dilogarithm and
Clausen functions,'
J. Math. Phys. 49 (2008), art. 043510 (32 pp).
- X. Zhou, T. Cai, and D. M. Bradley, `Signed
q-analogs of Tornheim's double series,'
Proc. Amer. Math. Soc. 136 (2008), 2689-2698.
- M. Kuba, `On evaluations of infinite double sums
and Tornheim's double series,'
Sém. Lothar. Combin. 58 (2008), art. B58d (13 pp).
- J. M. Borwein, I. J. Zucker, and J. Boersma,
`The evaluation of character Euler double sums,' Ramanujan J. 15
(2008), 377-405.
- A. Basu, `A new method in the study of Euler sums,'
Ramanujan J. 16 (2008), 7-24.
- Y. Komori,`An integral representation
of the Mordell-Tornheim double zeta function and its values at non-positive
integers,' Ramanujan J. 17 (2008), 163-183.
- K. N. Boyadzhiev, H. Gopalkrishna Gadiyar,
and R. Padma, `The values of an Euler sum at the negative integers and a
relation to a certain convolution of Bernoulli numbers,'
Bull. Korean Math. Soc. 45 (2008), 277-283.
- K. Matsumoto and H. Tsumura, `Functional relations
among certain double polylogarithms and their character analogues,'
Šialiai Math. Semin. 3(11) (2008), 189-205.
- T. Nakamura, `Double Lerch value relations
and functional relations for Witten zeta functions,'
Tokyo J. Math.
31 (2008), 551-574.
- T. Nakamura, `Double Lerch series and their functional
relations,' Aequationes Math. 75 (2008), 251-259.
- H. Tsumura, `On alternating analogues of Tornheim's
double series II', Ramanujan J. 18 (2009), 81-90.
- T. Nakamura, `Restricted and weighted sum formulas
for double zeta values of even weight,'
Šialiai Math. Semin. 4(12) (2009), 151-155.
- M. Eie and W-C. Liaw, `Double Euler sums on
Hurwitz zeta functions,' Rocky Mountain J. Math. 39 (2009), 1869-1883.
- K. N. Boyadzhiev, H. Gopalkrishna Gadiyar, and
R. Padma, `Alternating Euler sums at the negative integers,'
Hardy-Ramanujan J. 32 (2009), 24-37;
preprint 0811.4437[NT].
- J. Furuya and Y. Tanigawa, `Analytic properties
of Dirichlet series obtained from the error term in the Dirichlet divisor
problem,'
Pacific J. Math. 245 (2010), 239-254.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Functional equations and functional relations for the Euler double
zeta-function and its generalization of Eisenstein type,' Publ. Math.
Debrecen 77 (2010), 15-31.
- O. Espinosa and V. H. Moll, `The evaluation of
Tornheim double sums, Part II,' Ramanujan J. 22 (2010), 55-99;
preprint 0811.0557[NT].
- J. Zhao, `A note on colored Tornheim's double series,'
Integers 10
(2010), #A59, 879-882.
- I. Kiuchi, Y. Tanigawa, and W. Zhai, `Analytic
properties of double zeta-functions,' Indag. Math. (N. S.) 21 (2011),
16-29.
- A. Basu, `On the evaluation of Tornheim sums
and allied double sums,' Ramanujan J. 26 (2011), 193-207.
- T. Okamoto, `Some relations among
Apostol-Vu double zeta functions for coordinatewise limits at non-positive
integers,'
Tokyo J. Math.
34 (2011), 353-366.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Functional equations for double L-functions and values at
non-positive integers, Int. J. Number Theory 7 (2011),
1441-1461.
- P. Cartier, `On the double zeta values,' in
Galois-Teichmüller Theory and Arithmetic Geometry, H. Nakamura
et. al. (eds.), Adv. Studies in Pure Math. 68, Math. Soc. Japan,
Tokyo, 2012, pp. 91-119;
IHES preprint M-11-21.
- T. Nakamura, `A simple proof of the functional
equation for the Lerch type Tornheim double zeta function,'
Tokyo J. Math.
35 (2012), 333-337.
- T. Nakamura and K. Tasaka, `Remarks on double
zeta values of level 2,' J. Number Theory 133 (2013), 48-54.
- T. Machide, `Generators for vector spaces
consisting of double zeta values with even weight,' J. Number Theory
133 (2013), 2240-2246;
preprint 0802.1565[NT].
- T. Machide, `Some restricted sum formulas for
double zeta values,'
Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), 51-54.
- J. Wan, `Some notes on weighted sum formulae
for double zeta values,' in Number Theory and Related Fields: In
Memory of Alf van der Poorten, J. M. Borwein et. al (eds.),
Springer Proc. in Math. and Stat. 43, Springer, New York, 2013,
pp. 361-379;
preprint 1206.2424[NT].
- S. Baumard and L. Schneps, `Period polynomial
relations between double zeta values,' Ramanujan J. 32 (2013),
83-100;
preprint 1109.3786[NT].
- M. Kaneko and K. Tasaka, `Double zeta values,
double Eisenstein series, and modular forms of level 2,' Math. Ann.
357 (2013), 1091-1118;
preprint 1112.5697[NT].
- D. M. Bradley and X. Zhou, `A q-analog
of Euler's reduction formula for the double zeta function,' in
Computation and Analytical Mathematics, D. H. Bailey et. al.
(eds.), Springer Proc. in Math. and Stat. 50, Springer, New York, 2013,
pp. 113-126.
- Q. Tian, L. Ding, and Y. Mei,
`Evaluation of a class of double L-values of Tornheim's type,'
Adv. Math. (China) 42 (2013), 655-664.
- K. Dilcher, Kh. Hessami Pilehrood, and
T. Hessami Pilehrood, On q-analogues of double Euler sums,'
J. Math. Anal. Appl. 410 (2014), 979-988.
- K. Onodera, `A functional relation for Tornheim's
double zeta functions,' Acta Arithmetica 162 (2014), 337-354;
preprint 1211.1480[NT].
- K. Matsumoto and M. Shōji, `Numerical
computations on the zeroes of the Euler double zeta-function I,'
Mosc. J. Comb. Number Theory 4 (2014), 21-39;
preprint 1403.3765[NT].
- T. Okamoto and T. Onozuka, `Mean value theorems
for the Mordell-Tornheim double zeta function,' Ramanujan J. 37
(2015), 131-163.
- S. Ikeda, K. Matsuoka, and Y. Nagata,
`On certain mean values of the double zeta-function,' Nagoya Math. J.
217 (2015), 161-190;
preprint 1303.6505[NT].
- K. Matsumoto and H. Tsumura, `Mean value theorems
for the double zeta-function,' J. Math. Soc. Japan 67 (2015), 383-406;
preprint 1203.2242[NT].
- S. Ikeda and K. Masuoka, `Double analogue of
Hamburger's theorem,' Publ. Math. Debrecen 86 (2015), 89-98.
- Z-h. Li,`On functional relations for the
alternating analogues of Tornheim's double zeta function,'
Chin. Ann. Math. Ser. B 36 (2015), 907-918;
preprint 1011.2897[NT].
- H. Yuan and J. Zhao, `Double shuffle relations
of double zeta values and the double Eisenstein series at level N,'
J. London Math. Soc. (2) 92 (2015), 520-546;
preprint 1401.6699[NT].
- T. Nakamura, `Real zeroes of Hurwitz-Lerch
zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions,'
Math. Proc. Cambridge Philos. Soc. 160 (2016), 39-50;
preprint 1405.1504[NT].
- Y. Choie and K. Matsumoto, `Functional equations
for double series of Euler type with coefficients,' Adv. Math. 292
(2016), 529-557;
preprint 1306.0987[NT].
- D. Ma, `Inverse of some matrix related to double
zeta values of odd weight,' J. Number Theory 166 (2016), 166-180;
preprint 1510.06094[NT].
- D. Ma, `Period polynomial relations between
formal double zeta values of odd weight,' Math. Ann. 365 (2016),
345-362.
preprint 1409.7717[NT].
- Z. Shen and T. Cai, `Some weighted sum
identities for double zeta values,' Acta Math. Sinica (Engl. Ser.)
32 (2016), 797-806.
- S. Ikeda, I. Kiuchi, and M. Kaneaki, `Power
moments for the double zeta-function,' Kumamoto J. Math. 29
(2016), 1-33.
- I. Kiuchi and M. Minamide, `Mean square formula
for the double zeta-function,' Funct. Approx. Comment. Math. 55
(2016), 31-43.
- I. Kiuchi, `The fourth power moment of the
double zeta-function,' Publ. Inst. Math. (Beograd) (N.S.) 100
(114) (2016), 229-241.
- T. Nakamura, `Hurwitz-Lerch zeta and
Hurwitz-Lerch type of Euler-Zagier double zeta distributions,'
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 19 (2016),
art. 1650029 (12 pp.);
preprint 1405.1799[NT].
- X. Si, C. Xu, and M. Zhang, `Quadratic and cubic
harmonic number sums,' J. Math. Anal. Appl. 447 (2017), 419-434.
- D. Ma, `Period polynomial relations of
binomial coefficients and binomial realization of formal double zeta
space,' Int. J. Number Theory 13 (2017), 761-774.
- C. Xu, M. Zhang, and W. Zhu, `Some evaluation
of q-analogues of Euler sums,' Monatsh. Math. 182 (2017),
957-975.
- D. Romik, `On the number of n-dimensional
representations of SU(3), the Bernoulli numbers, and the Witten zeta function,'
Acta Arithmetica 180 (2017), 111-159;
preprint 1503.03776[NT].
- S. Kadota, T. Okamoto, and K. Tasaka, `Evaluation
of Tornheim's type of double series,' Illinois J. Math. 2 (2017),
171-186;
preprint 1703.07471[NT].
- Y. Choie and K. Matsumoto, `Functional equations
for double series of Euler-Hurwitz-Barnes type with coefficients,'
in Various Aspects of Multiple Zeta Values (Kyoto, 2013),
K. Ihara (ed.), RIMS Kōkyūroku Bessatsu B68 (2017),
pp. 91-109;
preprint 1403.1940[NT].
- M. Coffey, `Bernoulli identities, zeta
relations, determinant expressions, Mellin transforms, and representation
of the Hurwitz numbers,' J. Number Theory 184 (2018), 27-67;
preprint 1601.01673[NT].
- R. Harada, `On Euler's formulae for double zeta
values,'
Kyushu J. Math. 72 (2018), 15-24.
- J. M. Borwein and K. Dilcher, `Derivatives
and fast evaluation of the Tornheim zeta function, Ramanujan J. 45
(2018), 413-432.
- D. Bannerjee, T. M. Minamide, and Y. Tanigawa,
`Bounds of double zeta-functions and their applications,' Pacific J. Math.
304 (2020), 15-41.
- X. Si and C. Xu, `Evaluations of some quadratic
Euler sums,' Bull. Korean Math. Soc. 57 (2020), 489-508;
preprint 1701.00389[NT].
- K. Matsumoto and M. Shōji, `Numerical
computations on the zeroes of the Euler double zeta-function II,'
Eur. J. Math. 6 (2020), 488-507;
preprint 1606.03806[NT].
Weijia Wang and H. Zhang, `On Mordell-Tornheim
double Eisenstein series,' Res. Number Theory 6 (2020), art. 33
(20 pp).
- H. Bachmann, `Modular forms and q-analogues
of modified double zeta values,' Abh. Math. Semin. Univ. Hambg. 90
(2020), 201-213;
preprint 1808.09674[NT].
- Z. Wojtkowiak, `A weak Euler formula for
l-adic Galois double zeta values,' Math. J. Okayama Univ. 63
(2021), 87-105;
preprint 1811.05747[NT].
- T. Nakamura, `Symmetric Tornheim double zeta
functions,' Abh. Math. Semin. Univ. Hambg. 91 (2021), 5-14.
- J. Li and F. Liu, `Motivic double zeta values
of odd weight,' Manuscripta Math. 166 (2021), 19-36;
preprint 1710.02244[NT].
- K. Dilcher, `Analytic continuation of character
and alternating Tornheim zeta functions,' Amer. Math. Monthly 128
(2021), 780-795.
- A. Banerjee, T. M. Minamide, and Y. Tanigawa,
`Mean square of double zeta-function,' Tokyo J. Math. 44 (2021),
83-101.
- M Cenkci and A. Ünal, `A two-variable
Dirichlet series and its applications, Quaest. Math. 44 (2021),
1661-1679.
- S. Kadota, T. Okamoto, M. Ono, and K. Tasaka,
`On a unified double zeta function of Mordell-Tornheim type,'
Lith. Math. J. 62 (2022), 207-217;
preprint 2104.14794[NT].
- D. M. Bradley, `A signed analog of Euler's
reduction formula for the double zeta function,'
preprint 0707.4486[CA].
- G. Bastien, `Elementary methods for evaluating
Jordan's sums and analogous Euler's type sums and for setting a sigma
sum theorem,'
preprint 1301.7662[NT].
- K. Adegoke, `On generalized harmonic numbers,
Tornheim double series and linear Euler sums,'
preprint 1511.03079[NT].
- D. Ma, `Connections between double zeta values
relative to μN, Hecke operators TN,
and newforms of level Γ0(N) for N=2,3,'
preprint 1511.06102[NT].
- W. Yang, `Double zeta values and Picard-Fuchs
equation,'
preprint 1910.09576[NT].
- M. Hirose, `Modular phenomena for regularized
double zeta values,'
preprint 2003.05236[NT].
- M. Murahara and T. Nakamura, `On a basis for
Euler-Zagier double zeta functions with non-positive components,'
preprint 2005.09852[NT].
- T. Nakamura, `Rapidly convergent series
representations of symmetric Tornheim double zeta functions,'
preprint 2103.16873[NT].
- Y. Ma and L-P. Teo, `On Zagier's conjecture
about the inverse of a matrix related to double zeta values,'
preprint 2106.15260[NT].
- J. Quan, X. Wang, X. Wei, and C. Xu, `Parametric
Euler sums of harmonic numbers,'
preprint 2203.10728[NT].
- Y. Toma, `Mean value theorems for the Apostol-Vu
double zeta-function and its application,'
preprint 2204.02012[NT].
- H. Hirose, `Colored double zeta values and modular
forms of general level,
preprint 2205.08507[NT].
B. TRIPLE HARMONIC SERIES
- R. Sitaramachandrarao and M. V. Subbarao,
`Transformation formulae for multiple series,'
Pacific J. Math. 113 (1984), 471-479.
- C. Markett, `Triple sums and the Riemann zeta
function,' J. Number Theory 48 (1994), 113-132.
- J. M. Borwein and R. Girgensohn, `Evaluation of
triple Euler sums,' with appendix `Euler sums in quantum field theory'
by D. J. Broadhurst,
Electronic J. Combinatorics 3 (1996), R23 (27 pp).
- M. E. Hoffman and C. Moen, `Sums of triple harmonic
series,' J. Number Theory 60 (1996), 329-331.
- A. Panholzer and H. Prodinger, `Computer-free
evaluation of an infinite double sum via Euler sums,'
Sém. Lothar. Combin. 55 (2005), art. B55a (3 pp).
- K. Matsumoto, T. Nakamura, and H. Tsumura,
`Functional relations and special values of Mordell-Tornheim triple zeta
and L-functions,'
Proc. Amer. Math. Soc. 136 (2008), 2135-2145.
- K. Matsumoto, T. Nakamura, H. Ochiai, and
H. Tsumura, `On value-relations, functional relations and singularities
of Mordell-Tornheim and related triple zeta-functions,' Acta Arithmetica
132 (2008), 99-125.
- Y. L. Ong, M. Eie, and W-C. Liaw, `Explicit evaluation
of triple Euler sums,' Int. J. Number Theory 4 (2008), 437-451.
- I. Kiuchi and Y. Tanigawa, `Bounds for triple zeta
functions,' Indag. Math. (N. S.) 19 (2008), 97-114.
- T. Okamoto, `On alternating analogues of the
Mordell-Tornheim triple zeta values,' J. Ramanujan Math. Soc. 28 (2013),
247-269.
- T. Machide, `Extended double shuffle relations
and the generating functions of triple zeta values of any fixed weight,'
Kyushu J. Math.67 (2013), 281-307.
- M. Eie and F-Y. Yang, `Weighted sum formulas
from shuffle products of multiples of Riemann zeta values,' J. Number
Theory 147 (2015), 749-765.
- D. Ma and K. Tasaka, `Relationships between
multiple zeta values of depth 2 and 3 and period polynomials,'
Isr. J. Math. 242 (2021), 359-400;
preprint 1707.08178[NT].
- J. Li, `Remark on a symmetric zeta function,'
preprint 2110.09652[NT].
C. MULTIPLE HARMONIC SERIES/MULTIPLE ZETA VALUES
- P. L. Butzer, C. Markett, and M. Schmidt,
`Stirling numbers, central factorial numbers, and representations
of the Riemann zeta function,' Results Math. 19 (1991), 257-274.
- M. E. Hoffman, `Multiple harmonic series,'
Pacific J. Math. 152 (1992), 275-290.
- D. Zagier, `Values of zeta functions and their
applications,' in
First European Congress of Mathematics (Paris, 1992), Vol. II,
A. Joseph et. al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
- T. Q. T. Le and J. Murakami, `Kontsevich's
integral for the Homfly polynomial and relations between values of the
multiple zeta functions,' Topology Appl. 62 (1995), 193-206.
- T. Q. T. Le and J. Murakami, `Kontsevich's integral
for the Kauffman polynomial,' Nagoya Math. J. 142 (1996), 39-65.
- A. Granville, `A decomposition of Riemann's
zeta-function,' in Analytic Number Theory, Y. Motohashi (ed.),
London Math. Soc. Lecture Note Series 247,
Cambridge University Press, Cambridge, 1997, pp. 95-101.
- D. J. Broadhurst and D. Kreimer, `Association
of multiple zeta values
with positive knots via Feynman diagrams up to 9 loops,' Physics Lett. B
393 (1997), 403-412.
- M. E. Hoffman, `The algebra of multiple harmonic
series,' J. Algebra 194 (1997), 477-495.
- R. E. Crandall, `Fast evaluation of multiple zeta
sums,'
Math. Comp. 67 (1998), 1163-1172.
- J. M. Borwein, D. M. Bradley, D. J. Broadhurst,
and P. Lisoněk, `Combinatorial aspects of multiple zeta values,'
Electronic J. Combinatorics 5 (1998), R38 (12 pp).
- V. Hoang Ngoc Minh, M. Petitot, and J. Van Der Hoeven,
`Computation of the monodromy of generalized polylogarithms,'
Proceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation (Rostock), ACM, New York, 1998, pp. 276-283.
- Y. Ohno, `A generalization of the duality and sum
formulas on the multiple zeta values,' J. Number Theory 74 (1999),
39-43.
- T. Arakawa and M. Kaneko, `Multiple zeta values,
poly-Bernoulli numbers, and related zeta functions,' Nagoya Math. J.
153 (1999), 189-209.
- T. Takamuki, `The Kontsevich invariant and relations
of multiple zeta values,' Kobe J. Math. 16 (1999), 27-43.
- V. Hoang Ngoc Minh, G. Jacob, M. Petitot, and
N. E. Oussous,
`Aspects combinatoires des polylogarithms et des sommes d'Euler-Zagier,'
Sém. Lothar. Combin. 43 (1999), art. B43e (29 pp).
- J. Zhao, `Analytic continuation of multiple zeta
functions,'
Proc. Amer. Math. Soc. 128 (2000), 1275-1283.
- V. Hoang Ngoc Minh and M. Petitot, `Lyndon words,
polylogarithms, and the Riemann ζ function,' Discrete Math. 217
(2000), 273-292.
- M. Waldschmidt, `Valeurs zêta multiples. Une
introduction,'
J. Théor. Nombres Bordeaux 12 (2000), 581-595.
- M. Kontsevich and D. Zagier, `Periods,' in
Mathematics Unlimited--2001 and Beyond,, B. Engquist and W. Schmid
(eds.), Springer, Berlin, 2001, pp. 771-808.
- S. Akiyama, S. Egami, and Y. Tanigawa,
`Analytic continuation of
multiple zeta-functions and their values at non-positive integers,'
Acta Arithmetica 98 (2001), 107-116.
- K. Ihara and T. Takamuki, `The quantum g2
invariant and relations of multiple zeta values,' J. Knot Theory
Ramifications 10 (2001), 983-997.
- S. Akiyama and Y. Tanigawa,
`Multiple zeta values at non-positive integers,'
Ramanujan J. 5 (2001), 327-351.
- Y. Ohno and D. Zagier, `Multiple zeta values of
fixed weight, depth, and height,' Indag. Math. (N. S.) 12 (2001),
483-487.
- D. Bowman and D. M. Bradley, `The algebra and
combinatorics of shuffles
and multiple zeta values,' J. Combin. Theory Ser. A 97 (2002), 43-61.
- M. E. Hoffman, `Periods of mirrors and multiple zeta
values,'
Proc. Amer. Math. Soc. 130 (2002), 971-974.
- T. Terasoma, `Selberg integrals and multiple zeta
values,' Compos. Math. 133 (2002), 1-24.
- P. Cartier, `Fonctions polylogarithmes, nombres
polyzêtas et groupes pro-unipotents,' Astérisque 282
(2002), 137-173 (Sém. Bourbaki no. 885).
- U. Müller and C. Schubert, `A quantum field
theoretical representation of Euler-Zagier sums,'
Internat. J. Math. Math. Sci. 31 (2002), 127-148.
- S. Egami and K. Matsumoto, `Asymptotic expansions
of multiple zeta functions and power mean values of Hurwitz zeta functions,'
J. London Math. Soc. (2) 66 (2002), 41-60.
- T. Terasoma, `Mixed Tate motives and multiple zeta
values,' Invent. Math. 149 (2002), 339-369;
preprint AG/0104231.
- S. Fischler, `Formes linéaires en
polyzêtas et intégrales multiples,' C. R. Math. Acad. Sci. Paris,
Ser. I 335 (2002), 1-4.
- K. Matsumoto, `On the analytic continuation of
various multiple-zeta functions,'
in Number Theory for the Millennium (Urbana, 2000), Vol. II,
M. A. Bennett et. al. (eds.), A. K. Peters, Natick, MA, 2002,
pp. 417-440.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions II',
in Analytic and Probabilistic Methods in Number Theory (Palanga, 2001),
A. Dubickas et. al. (eds.), TEV, Vilnius, Lithuania, 2002, pp. 188-194.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions I',
J. Number Theory 101 (2003), 223-243.
- D. Bowman, D. M. Bradley, and J. H. Ryoo,
`Some multi-set inclusions
associated with shuffle convolutions and multiple zeta values,'
European J. Combin. 24 (2003), 121-127.
- M. E. Hoffman and Y. Ohno, `Relations of multiple
zeta values and their algebraic expression,' J. Algebra 262 (2003),
332-347;
preprint QA/0010140.
- W. Zudilin, `Algebraic relations for multiple zeta
values' (Russian), Uspekhi Mat. Nauk 58 (2003), 3-32; English
translation in Russian Math. Surveys 58 (2003), 1-29;
preprint.
- H. Ishikawa and K. Matsumoto, `On the estimation
of the order of Euler-Zagier multiple zeta-functions,' Illinois J. Math.
47 (2003), 1151-1166.
- M. Espie, J-C. Novelli, and G. Racinet, `Formal
computations about multiple zeta values,' in From Combinatorics to
Dynamical Systems (Strasbourg, 2002), F. Fauvet and C. Mitschi (eds.),
IRMA Lect. Math. Theor. Phys. 3, de Gruyter, Berlin, 2003, pp. 1-16.
- D. Bowman and D. M. Bradley, `Resolution of
some open problems concerning multiple zeta evaluations of arbitrary depth,'
Compos. Math. 139 (2003), 85-100.
- J. Écalle, `ARI/GARI, la dimorphie et
l'arithmétique des multizêtas: un premier bilan,'
J. Théor. Nombres Bordeaux 15 (2003), 411-478.
- H. Furusho, `The multiple zeta value algebra and
the stable derivation algebra,' Publ. Res. Inst. Math. Sci. 39 (2003),
695-720;
preprint NT/0011261.
- K. Matsumoto, `On Mordell-Tornheim and other
multiple zeta-functions,' in Proceedings of the Session in Analytic
Number Theory and Diophantine Equations,
D. R. Heath-Brown and B. Z. Moroz (eds.), Bonner Math. Schriften 360,
Univ. Bonn, Bonn, 2003, n. 25 (17 pp.).
- H. Żołądek, `Note on multiple
zeta-values,' Bul. Acad. Ştiinţe Repub. Mold. Mat. 2003,
78-82.
- H. Furusho, `p-Adic multiple zeta values
I. p-Adic multiple polylogarithms and the p-adic KZ equation,'
Invent. Math. 155 (2004), 253-286;
preprint NT/0304085.
- H. Tsumura, `Combinatorial relations for Euler-Zagier
sums,' Acta Arithmetica 111 (2004), 27-42.
- H. Tsumura, `Multiple harmonic series related to
multiple Euler numbers,' J. Number Theory 106 (2004), 155-168.
- J. Okuda and K. Ueno, `Relations for multiple zeta
values and Mellin transforms of multiple polylogarithms,' Publ. Res. Inst.
Math. Sci. 40 (2004), 537-564;
preprint NT/0301277.
- S. Ünver, `p-Adic multi-zeta values,'
J. Number Theory 108 (2004), 111-156.
- J. Écalle, `Recent advances in the analysis
of divergence and singularities,' in Normal Forms, Bifurcations and
Finiteness Problems in Differential Equations (Montreal, 2002),
Y. Ilyashenko et. al. (eds.), Kluwer, Dordrecht, 2004, pp. 87-186.
- J. Écalle, `Multizetas, perinomal numbers,
arithmetical dimorphy,
and ARI/GARI,' Ann. Fac. Sci. Toulouse 13 (2004), 683-708.
- A. B. Goncharov and Yu. I. Manin, `Multiple
ζ-motives and moduli spaces M0,n,' Compoitio Math.
140 (2004), 1-14;
preprint AG/0204102.
- L. Boutet de Monvel, `Remark on divergent multizeta
series,' in Microlocal Analysis and Asymptotic Analysis,
RIMS Kōkyūroku 1397 (2004), pp. 1-9.
- A. J. Yee, `A new shuffle convolution for multiple
zeta values,' J. Algebraic Combin. 21 (2005), 55-69.
- D. M. Bradley, `Multiple q-zeta values,'
J. Algebra 283 (2005), 752-798; preprint QA/0402093.
- H. Tsumura, `On Mordell-Tornheim zeta values,'
Proc. Amer. Math. Soc. 133 (2005), 2387-2393.
- T. Nakamura, `Bernoulli numbers and multiple zeta
values,'
Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 21-22.
- D. M. Bradley, `Partition identities for the
multiple zeta function,'
in Zeta Functions, Topology and Quantum Physics, T. Aoki et. al.
(eds.), Developments in Math. 14, Springer, New York, 2005,
pp. 19-29; preprint CO/0402091.
- M. E. Hoffman, `Algebraic aspects of multiple zeta
values,' in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.), Developments in Math. 14, Springer, New York,
2005, pp. 51-74;
preprint QA/0309425.
- Y. Ohno, `Sum relations for multiple zeta values,'
in Zeta Functions, Topology and Quantum Physics, T. Aoki et. al.
(eds.), Developments in Math. 14, Springer, New York, 2005, pp. 131-144.
- J. Okuda and K. Ueno, `The sum formula for
multiple zeta values and connection problem of the formal
Knizhnik-Zamolodchikov equation,' in Zeta Functions, Topology and
Quantum Physics, T. Aoki et. al. (eds.), Developments in Math. 14,
Springer, New York, 2005,
pp. 145-170;
preprint NT/0310259.
- M. Waldschmidt, `Hopf algberas and transcendental
numbers,' in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.), Developments in Math. 14, Springer, New York,
2005, pp. 197-220.
- T. Aoki and Y. Ohno, `Sum relations for multiple
zeta values and connection formulas for the Gauss hypergeometric functions,'
Publ. Res. Inst. Math. Sci. 41 (2005), 329-337;
preprint NT/0307264.
- J. Choi and H. M. Srivastava, `Explicit evaluation
of Euler and related sums,' Ramanujan J. 10 (2005), 51-70.
- P. Freitas, `Integrals of polylogarithmic
functions, recurrence relations, and associated Euler sums,'
Math. Comp. 74 (2005), 1425-1440.
- J-W. Son and D. S. Jang, `Explicit evaluations of
special multiple
zeta values ζ({4l+2}n) and ζ({4l}n),'
Commun. Korean Math. Soc. 20 (2005), 247-257.
- R. Masri, `Multiple Dedekind zeta functions
and evaluations of extended multiple zeta values,' J. Number Theory
115 (2005), 295-309.
- M. Kaneko, `Multiple zeta values,' Sugaku Expositions
18 (2005), 221-232. (Translation of Japanese original that appeared
in Sūgaku 54 (2002), 404-415.)
- E. A. Ulanskii, `Stuffle relations for multiple
zeta values' (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2005,
52-55,73; English translation in Moscow Univ. Math. Bull. 60 (2005),
41-43.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions III,'
Comment. Math. Univ. St. Pauli 54 (2005), 163-186.
- S. A. Zlobin, `Generating functions for a multiple
zeta function' (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2005,
55-59; English translation in Moscow Univ. Math. Bull. 60 (2005),
44-48.
- K. Ihara, M. Kaneko, and D. Zagier, `Derivation
and double shuffle relations for multiple zeta values,' Compos. Math.
142 (2006), 307-338;
preprint MPIM2004-100.
- J. Kajikawa, `Duality and double shuffle relations
for multiple zeta values,' J. Number Theory 121 (2006), 1-6.
- M. E. Hoffman, `Quasi-symmetric functions,
multiple zeta values, and rooted trees,' Oberwolfach Reports 3
(2006), 1259-1262;
preprint
QA/0609413.
- A. Besser and H. Furusho, `The double shuffle
relations for p-adic multiple zeta values,'
in Primes and Knots (Baltimore, 2003), T. Kohno and M. Morishita
(eds.), Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006,
pp. 9-29;
preprint NT/0310177.
- H. Furusho, `Multiple zeta values and
Grothendick-Teichmüller groups,'
in Primes and Knots (Baltimore, 2003), T. Kohno and M. Morishita
(eds.), Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006,
pp. 49-82;
preprint RIMS-1357.
- K. Matsumoto, `Analytic properties of multiple
zeta-functions in several variables,'
in Number Theory: Tradition and Modernization,
W. Zhang and Y. Tanigawa (eds.),
Developments in Math. 15, Springer, New York, 2006, pp. 153-173.
- T. Terasoma, `Geometry of multiple zeta values,' in
International Congress of Mathematicians (Madrid, 2006), Vol. II,
European Math. Soc., Zürich, 2006, pp. 627-635.
- B. Enriquez and F. Gavarini, `A formula for the
logarithm of the
KZ associator,'
SIGMA 2 (2006), Paper 080 (3 pp).
- Y. Ohno and N. Wakabayashi, `Cyclic sum of multiple
zeta values,' Acta Arithmetica 123 (2006), 289-295.
- F. C. S. Brown, `Périodes des espaces des modules
M0,n et valeurs zêtas multiples,' C. R. Math. Acad. Sci. Paris
Ser. I 342 (2006), 949-954.
- J. Cresson, `Polyzêtas stricts, larges et
pondérés,' in Algèbre et théorie des nombres.
Années 2003-2006, Publ. Math. Univ. Franche-Comté
Besançon Algèbr. Theor. Nr., Besançon, France, 2006,
pp. 33-41.
- M. Ram Murty and K. Sinha, `Multiple Hurwitz zeta
functions,' in Multiple Dirichlet Series, Automorphic Forms,
and Analytic Number Theory (Bretton Woods, 2005),
S. Friedberg et. al. (eds.),
Proc. Symp. Pure Math. 75, Amer. Math. Soc., Providence, RI, 2006,
pp. 135-156.
- M. Waldschmidt, `Transcendence of periods:
the state of the art,' Pure Appl. Math. Q. 2 (2006), 435-463.
- K. Kamano, `The multiple Hurwitz zeta function
and a generalization of Lerch's formula,'
Tokyo J. Math.
29 (2006), 61-73.
- K. Matsumoto and H. Tsumura, `On Witten multiple
zeta functions associated with seminsimple Lie algebras I,' Ann. Inst. Fourier
Grenoble 56 (2006), 1457-1504.
- R. Pemantle and C. Schneider, `When is 0.999... equal
to 1?,' Amer. Math. Monthly 114 (2007), 344-350.
- H. Furusho, `p-Adic multiple zeta values
II. Tannakian interpretations,' Amer. J. Math. 129 (2007), 1105-1144;
preprint NT/0506117.
- Y. Ohno and J. Okuda, `On the sum formula for
the q-analogue of non-strict multiple zeta values,'
Proc. Amer. Math. Soc. 135 (2007), 3029-3037.
- M. Kaneko, `On an extension of the derivation
relation for multiple zeta values,' in The Conference on L-Functions
(Fukuoka, 2006), L. Weng and M. Kaneko (eds.), World Scientific,
Singapore, 2007, pp. 89-94.
- Y. Komori, K. Matsumoto, and H. Tsumura, `Zeta
functions of root systems,' in The Conference on L-Functions
(Fukuoka, 2006), L. Weng and M. Kaneko (eds.), World Scientific,
Singapore, 2007, pp. 115-140.
- D. M. Bradley, `On the sum formula for multiple
q-zeta values,' Rocky Mountain J. Math. 37 (2007), 1427-1434;
preprint QA/0411274.
- S. Carr, `Periods on the moduli space of genus
0 curves,' Oberwolfach Reports 4 (2007), 1495-1497;
preprint 0911.2671[NT].
- J. Zhao, `Multiple q-zeta functions
and multiple q-polylogarithms,' Ramanujan J. 14 (2007), 189-221;
preprint QA/0304448.
- J. Okuda and Y. Takeyama, `On relations for the
multiple q-zeta values,' Ramanujan J. 14 (2007), 379-387;
preprint QA/0402152.
- H. Furusho and A. Jafari, `Regularization
and generalized double shuffle relations for p-adic multiple zeta
values,' Compos. Math. 143 (2007), 1089-1107;
preprint NT/0510681.
- T. Aoki, Y. Kombu, and Y. Ohno, `A generating
function for sums of multiple zeta values and its applications,'
Proc. Amer. Math. Soc. 136 (2008), 387-395
- A. Petojevic and H. M. Srivastava,
`Computation of the Mordell-Tornheim zeta values,
Proc. Amer. Math. Soc. 136 (2008), 2719-2728.
- Z-h. Li, `Sum of multiple zeta values
of fixed weight, depth, and i-height,' Math. Z. 258 (2008),
133-142.
- J. Cresson, S. Fischler and T. Rivoal,
`Séries hypergéométriques multiples et
polyzêtas,' Bull. Math. Soc. France 136 (2008), 97-145;
preprint
NT/0609743.
- J. Cresson, S. Fischler and T. Rivoal,
`Phénomènes de symétrie dans des formes
linéaires en polyzêtas,'
J. reine angew. Math. 617 (2008), 109-151;
preprint NT/0609744.
- K. Ihara and H. Ochiai, `Symmetry on linear
relations for multiple zeta values,' Nagoya Math. J. 189 (2008),
49-62.
- K. Matsumoto and H. Tsumura, `A new method
of producing functional relations among multiple zeta-functions,'
Quarterly J. Math. 59 (2008), 55-83.
- L. Guo and B. Zhang, `Renormalization of multiple
zeta values,' J. Algebra 319 (2008), 3770-3809;
preprint NT/0606076.
- L. Guo and B. Zhang, `Differential Algebraic
Birkhoff Decomposition and the renormalization of multiple zeta values,'
J. Number Theory 128 (2008), 2318-2339;
preprint 0710.0432[NT].
- M. E. Hoffman, `A character on the quasi-symmetric
functions coming from multiple zeta values,'
Electronic J. Combinatorics 15(1) (2008), R97 (21 pp).
- S. Fischler, `Multiple series connected to
Hoffman's conjecture on multiple zeta values,' J. Algebra 320 (2008),
1682-1703;
preprint NT/0609799.
- Y. Komori, K. Matsumoto, and H. Tsumura,
'Zeta and L-functions and Bernoulli polynomials of root systems,
Proc. Japan Acad. Ser. A Math. Sci.84 (2008), 57-62.
- M. Kaneko, `A note on poly-Bernoulli numbers and
multiple zeta values,' in Diophantine Analysis and Related Fields:
DARF 2007/2008, T. Komatsu (ed.), AIP Conference Proceedings 976,
American Institute of Physics, Melville, NY, 2008, pp. 118-124.
- Y-H. Chen, `Multiple zeta values and application
to the Lacunary recurrence formulas of Bernoulli numbers,'
J. Phys. Conf. Ser. 96 (2008), art. 012212 (5 pp).
- K. Ebrahimi-Fard and L. Guo, `Multiple zeta values
and Rota-Baxter algebras,'
Integers 8(2) (2008), #A4 (18 pp).
- Y. Ohno and W. Zudilin, `Zeta stars,'
Commun. Number Theory Phys. 2 (2008), 325-347;
preprint MPIM2007-134.
- M. Kaneko, M. Noro, and K. Tsurumaki, `On
a conjecture for the dimension of the space of the multiple zeta values,'
in Software for Algebraic Geometry, M. Stillman et. al (eds.),
IMA Volumes in Mathematics and its Applications 148, Springer, New York,
2008, pp. 47-58.
- S. Muneta, `On some explicit evaluations of
multiple star-zeta values,' J. Number Theory 128 (2008), 2538-2548;
preprint
0710.3219[NT].
- R. Lu, `The Γ^-genus and a regularization
of an S1-equivariant Euler class,' J. Phys. A: Math. Theor.
41 (2008), 425204 (13 pp);
preprint 0804.2714[math-ph].
- M. Eie and C-S. Wei, `A short proof of the sum
formula and its generalization,' Arch. Math. (Basel) 91 (2008), 330-338.
- J. Zhao, `Renormalization of multiple
q-zeta values,' Acta Math. Sinica (Engl. Ser.) 24 (2008),
1593-1616;
preprint NT/0612093.
- J. P. Kelliher and R. Masri, `Analytic continuation
of multiple Hurwitz zeta functions,' Math. Proc. Cambridge Philos. Soc.
145 (2008), 605-617.
- S. A. Zlobin, `Relations for multiple zeta values'
(Russian), Mat. Zametki 84 (2008), 825-837; English translation
in Math. Notes 84 (2008), 771-782.
- J. Zhao, `An exotic shuffle relation for
multiple zeta values,' Arch. Math. (Basel) 91 (2008), 409-415; cf.
preprint 0707.3244[NT].
- S. Muneta, `A note on evaluations of multiple
zeta values,'
Proc. Amer. Math. Soc. 137 (2009), 931-935.
- S. Muneta, `Algebraic setup of non-strict multiple
zeta values,' Acta Arithmetica 136 (2009), 7-18;
preprint
0711.0252[NT].
- G. Kawashima, `A class of relations among multiple
zeta values,' J. Number Theory 129 (2009), 755-788;
preprint NT/0702824.
- M. Eie, W-C. Liaw, and Y. L. Ong, `A restricted
sum formula among multiple zeta values,' J. Number Theory 129 (2009),
908-921.
- Y. Sasaki, `Multiple zeta values for coordinatewise
limits at non-positive integers,' Acta Arithmetica 136 (2009), 299-317.
- F. C. S. Brown, `The massless higher-loop
two-point function,' Commun. Math. Phys. 287 (2009), 925-958;
preprint 0804.1660[AG].
- Y. Takeyama, `A q-analogue of non-strict
multiple zeta values and basic hypergeometric series,
Proc. Amer. Math. Soc. 137 (2009), 2997-3002.
- T. Tanaka, `On the quasi-derivation relation for
multiple zeta values,' J. Number Theory 129 (2009), 2021-2034;
preprint
0710.4920[NT].
- T. Nakamura, `Zeroes and the universality for
the Euler-Zagier-Hurwitz type of multiple zeta values,'
Bull. London Math. Soc. 41 (2009), 691-700.
- T. Okamoto, `Generalizations of Apostol-Vu
and Mordell-Tornheim zeta functions,' Acta Arithmetica 140 (2009),
169-187.
- X. Zhou, D. M. Bradley, and T. Cai, `Depth reduction
of a class of Witten zeta functions,'
Electronic J. Combinatorics 16(1) (2009), N27 (7 pp).
- L. Guo and B. Xie, `Weighted sum formula for
multiple zeta values,' J. Number Theory 129 (2009), 2747-2765;
preprint
0809.5110[NT].
- F. C. S. Brown, `Multiple zeta values and periods
of moduli spaces M0,n,' Ann. Sci. Éc. Norm. Supér.
(4) 42 (2009), 371-489;
preprint AG/0606419.
- M. Eie, Topics in Number Theory, Monographs
in Number Theory 2, World Scientific, Singapore, 2009.
- P. Guha, `Witten's volume formula, cohomological
pairings of moduli spaces of flat connections and applications of multiple
zeta functions,' in Quantum Field Theory: Competitive Models,
B. Fauser et. al. (eds.), Birkhaüser Basel, Basel, 2009, pp. 95-116.
- Y. Komori, K. Matsumoto and H. Tsumura,
`Functional relations for zeta-functions of root systems,' in
Number Theory: Dreaming in Dreams (Osaka, 2008),
T. Aoki et. al. (eds.), World Scientific, Singapore, 2009, pp. 135-183.
- Z-h. Li, `Sum of multiple q-zeta values,'
Proc. Amer. Math. Soc. 138 (2010), 505-516.
- Z-h. Li, `Gamma series associated to elements
satisfying regularized double shuffle relations,' J. Number Theory 130
(2010), 213-231.
- I. Mező and A. Dil, `Hyperharmonic series
involving the Hurwitz zeta function,' J. Number Theory 130 (2010),
360-369.
- T. Tanaka and N. Wakabayashi, `An algebraic
proof of the cyclic sum formula for multiple zeta values,' J. Algebra
323 (2010), 766-778;
preprint 0902.2723[NT].
- Z-h. Li, `Higher order shuffle regularization
of multiple zeta values,'
Proc. Amer. Math. Soc. 138 (2010), 2321-2333.
- S. T. Joyner, `On a generalization of Chen's iterated
integrals,' J. Number Theory 130 (2010), 254-288.
- I. Soudères, `Motivic double shuffle,'
Int. J. Number Theory 6 (2010), 339-373;
preprint 0808.0248[AG].
- Y. Komori, K. Matsumoto, and H. Tsumura, `On
Witten multiple zeta-functions associated with semisimple Lie algebras II,'
J. Math. Soc. Japan 62 (2010), 355-394.
- F. C. S. Brown, S. Carr, and L. Schneps,
`Algebra of cell-zeta values,' Compos. Math. 146 (2010), 731-771;
preprint 0910.0122[NT].
- J. M. Borwein and O-Y. Chan, `Duality in tails
of multiple zeta values,' Int. J. Number Theory 6 (2010), 501-514.
- L. Guo, `Algebraic Birkhoff decomposition and its
applications,' in Automorphic Forms and the Langlands Program
(Guangzhao, 2007), Lizhen Ji et. al. (eds.), International Press,
Somerville, Mass. 2010, pp. 277-319;
preprint 0807.2266[RA].
- T. Tanaka, `A simple proof of a certain formula
for multiple zeta-star values, J. Algebra, Number Theory Adv. Appl. 3
(2010), 97-110.
- C. Yamazaki, `On the duality for multiple
zeta-star values of height one,'
Kyushu J. Math. 64 (2010), 145-152.
- Y. Sasaki, `The first derivative multiple
zeta values at non-positive integers,' Ramanujan J. 21 (2010),
267-284.
- T. Terasoma, `Period integral and multiple zeta
values,' Sugaku Expositions 23 (2010), 91-103. (Translation of
Japanese original that appeared in Sūgaku 57 (2005), 255-266.)
- M. Kaneko, `Poly-Bernoulli numbers and
related zeta functions,' in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 73-85.
- Y. Komori, K. Matsumoto and H. Tsumura,
`An introduction to the theory of zeta functions of root systems,' in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 115-140.
- T. Rivoal, `Hypergeometric constructions of
rational approximations of (multiple) zeta values, in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 167-183.
- T. Tanaka, `Algebraic interpretation of Kawashima
relation for multiple zeta values,' in Algebraic Number Theory and
Related Topics (Kyoto, 2008), H. Nakamura et. al. (eds.),
RIMS Kōkyūroku Bessatsu B19 (2010), pp. 117-134.
- L. Guo, S. Paycha, B. Xie, and B. Zhang,
`Double shuffle relations and renormalization of multiple zeta values,'
in The Geometry of Algebraic Cycles (Columbus, 2008),
R. Akhtar et. al (eds.), Clay Math. Proc. 9, Amer. Math. Soc.,
Providence, 2010, pp. 145-187;
preprint 0906.0092[NT].
- L. Guo and B. Zhang, `Polylogarithms and
multiple zeta values from free Rota-Baxter algebras,' Sci. China Math.
53 (2010), 2239-2258;
preprint 1210.1818[NT].
- Y. L. Ong, M. Eie, and C-S. Wei, `Explicit
evaluations of quadruple Euler sums,' Acta Arithmetica 144 (2010),
213-230.
- M. Eie, F-Y. Yang, and Y. L. Ong,
`Some alternating double sum formulae of multiple zeta values,'
Comput. Appl. Math. 29 (2010),
375-391.
- M-A. Coppo and B. Candelpergher, `The Arakawa-Kaneko
zeta function,' Ramanujan J. 22 (2010), 153-162.
- D. Manchon and S. Paycha, `Nested sums of symbols
and renormalised multiple zeta functions,' Int. Math. Res. Notices
2010, 4628-4697;
preprint NT/0702135.
- D. M. Bradley and X. Zhou, `On Mordell-Tornheim
sums and multiple zeta values,' Ann. Sci. Math. Québec 34 (2010),
15-23.
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta values I. Zeta(2),'
Fund. Math. 210 (2010), 207-242.
- Y. Sasaki, `On multiple higher Mahler measures
and multiple L-values,' Acta Arithmetica 144 (2010), 159-165.
- M. Kaneko and Y. Ohno, `On a kind of duality
of multiple zeta-star values,' Int. J. Number Theory 6 (2010),
1927-1932.
- K. Matsumoto, `The analytic theory of multiple
zeta-functions and its applications,' Sugaku Expositions 23 (2010),
143-167. (Translation of Japanese original that appeared in Sūgaku
59 (2007), 24-45.)
- K. Onodera, `Generalized log sine integrals
and the Mordell-Torheim zeta values,'
Trans. Amer. Math. Soc. 363 (2011), 1463-1485.
- M. Igarashi, `Cyclic sum of certain parametrized
multiple series,' J. Number Theory 131 (2011), 508-518.
- T. Aoki, Y. Ohno, and N. Wakabayashi,
`On generating functions of multiple zeta values and generalized
hypergeometric functions,' Manuscripta Math. 134 (2011), 139-155.
- S. Saito, T. Tanaka, and N. Wakabayashi,
`Combinatorial remarks on the cyclic sum theorem for multiple zeta values,'
J. Integer Sequences 14 (2011), art. 11.2.4 (20 pp).
- K. Ihara, J. Kajikawa, Y. Ohno, and J. Okuda,
`Multiple zeta values vs. multiple zeta-star values,'
J. Algebra 332 (2011), 187-208.
- F. C. S. Brown, `Multiple zeta values and
periods: from moduli spaces to Feynman integrals,' in Combinatorics
and Physics (Bonn, 2006-2007), K. Ebrahimi-Fard et. al (eds.),
Contemp. Math. 539, Amer. Math. Soc., Providence, RI, 2011, pp. 27-52.
- D. Manchon, `Renormalized multiple zeta values
which respect quasi-shuffle relations,' in Combinatorics and Physics
(Bonn, 2006-2007), K. Ebrahimi-Fard et. al. (eds.), Contemp.
Math. 539, Amer. Math. Soc., Providence, RI, 2011, pp. 255-267.
- Y. Komori, K. Matsumota and H. Tsumura,
`On Witten multiple zeta-functions associated with semisimple Lie
algebras IV,' Glasgow Math. J. 53 (2011), 185-206;
preprint 0907.0972[NT].
- J. Zhao, `Witten volume formulas for semi-simple
Lie algebras,'
Integers 11A
(2011), #22 (21 pp).
- E. A. Ulanskii, `Multiple zeta values' (Russian),
Vestnik Moskov. Univ. Ser. I Math. Mekh. 66 (2011), 14-19; English
translation in Moscow Univ. Math. Bull. 66 (2011), 105-109.
- T. Okamoto, `Multiple zeta values related
with the zeta-functions of the root system of type Br,'
JP J. Algebra Number Theory Appl. 22 (2011), 1-44.
- S. V. Duzhin, `Conway polynomial and Magnus expansion'
(Russian), Algebra i Analiz 23 (2011), 175-188; English translation
in St. Petersburg Math. J. 23 (2012), 541-550;
preprint 1001.2500[GT].
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Shuffle products of multiple zeta values and partial fraction decompositions
of zeta-functions of root systems,' Math. Z. 268 (2011),
993-1011; preprint 0908.0670[NT].
- T. Nakamura and Ł. Pańkowski, `Applications
of hybrid universality to multivariable zeta-functions,'
J. Number Theory 131 (2011), 2151-2161.
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta values II. A generalization
of the WKB method,' J. Math. Anal. Appl. 383 (2011), 55-70.
- H. Furusho, `Double shuffle relation for
associators,'
Ann. of Math. 174 (2011), 341-360.
- J. Zhao and X. Zhou, `Witten multiple zeta
values attached to sl(4),'
Tokyo J. Math.
34 (2011), 135-152.
- L. Guo and B. Xie, `The shuffle relation
of fractions from multiple zeta values,' Ramanujan J. 25 (2011),
307-317.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Multiple zeta values and zeta-functions of root systems,'
Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 103-107.
- S. Gun, M. Ram Murty, and P. Rath, `On a conjecture
of Chowla and Milnor,' Canad. J. Math. 63 (2011), 1328-1344.
- Y. Ohno, J. Okuda, and W. Zudilin,
`Cyclic q-MZSV sum,' J. Number Theory 132 (2012), 144-155;
preprint MPIM2008-31.
- Z. Shen and T. Cai, `Some identities for multiple
zeta values,' J. Number Theory 132 (2012), 314-323.
- F. C. S. Brown, `Mixed Tate motives over Z,'
Ann. of Math. 175 (2012), 949-976.
- D. Zagier, `Evaluation of the multiple zeta
values ζ(2,...,2,3,2,...,2),'
Ann. of Math. 175 (2012), 977-1000.
- M. Igarashi, `A generalization of Ohno's relation
for multiple zeta values,' J. Number Theory 132 (2012), 565-578.
- Y. Takeyama, `Quadratic relations for a
q-analogue of multiple zeta values,' Ramanujan J. 27 (2012),
15-28;
preprint 1008.0686[NT].
- H. Kondo, S. Saito, and T. Tanaka, `The Bowman-Bradley
theorem for multiple zeta-star values,' J. Number Theory 132 (2012),
1984-2002; preprint 1003.5973[NT].
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta-values III. Zeta(3),'
J. Math. Phys. 53 (2012), art. 013507 (40 pp).
- M. Eie and C-S. Wei, `Evaluations of some quadruple
Euler sums of even weight,' Funct. Approx. Comment. Math. 46 (2012),
63-77.
- T. Chatterjee, `The strong Chowla-Milnor spaces
and a conjecture of Gun, Murty and Rath,' Int. J. Number Theory 8
(2012), 1301-1314.
- Z-h. Li, `On a conjecture of Kaneko and Ohno,'
Pacific J. Math.
257 (2012), 419-430.
- L. Schneps, `Double shuffle and Kashiwara-Vergne
Lie algebras,' J. Algebra 367 (2012), 54-74;
preprint 1201.5316[AG].
- Y. Komori, K. Matsumota and H. Tsumura,
`On Witten multiple zeta-functions associated with semisimple Lie
algebras III,' in Multiple Dirichlet Series, L-Functions and
Automorphic Forms, D. Bump et. al. (eds.), Progress in Math. 300,
Birkhaüser, New York, 2012, pp. 223-286;
preprint 0907.0955[NT].
- T. Machide, `Weighted sums with two parameters
of multiple zeta values and their formulas,' Int. J. Number Theory
8 (2012), 1903-1921;
preprint 1112.2554[NT].
- N. Wakabayashi, `On Hoffman's relation for multiple
zeta-star values,' Int. J. Number Theory 8 (2012), 1971-1976.
- Y. Sasaki, `On multiple higher Mahler measures
and Witten zeta values associated with semisimple Lie algebras,'
Commun. Number Theory Phys. 6 (2012), 771-784.
- S. T. Joyner, `On an algebraic version of the
Knizhnik-Zamolodchikov equation,' Ramanujan J. 28 (2012), 361-384;
preprint 1009.5659.
- T. Okamoto, `Multiple zeta values related
with the zeta-function of root systems of type A2,
B2 and G2,
Comment. Math. Univ. St. Pauli 61 (2012), 9-27.
- F. C. S. Brown, `On the decomposition of motivic
multiple zeta values,' in
Galois-Teichmüller Theory and Arithmetic Geometry, H. Nakamura
et. al. (eds.), Adv. Studies in Pure Math. 68, Math. Soc. Japan,
Tokyo, 2012, pp. 31-58;
preprint 1102.1310[NT].
- S. Carr and L. Schneps, `Combinatorics of the
double shuffle Lie algebra,' in
Galois-Teichmüller Theory and Arithmetic Geometry, H. Nakamura
et. al. (eds.), Adv. Studies in Pure Math. 68, Math. Soc. Japan,
Tokyo, 2012, pp. 59-89;
preprint.
- Y. Komori, K. Matsumoto and H. Tsumura,
`Functional relations for zeta-functions of weight lattices of
type A3,' in Analytic and Probabilistic Methods in
Number Theory (Palanga, 2011),
A. Laurinčikas et. al. (eds.), TEV, Vilnius, Lithuania,
2012, pp. 151-172.
preprint 1202.0874[NT].
- I. Soudères, `Explicit associator relations
for multiple zeta values,'
Math. J. Okayama Univ. 55 (2013), 1-52;
preprint 1007.1076[AG].
- Z-h. Li, `Regularized double shuffle and
Ohno-Zagier relations of multiple zeta values,' J. Number Theory
133 (2013), 596-610.
- S. Ünver, `Drinfel'd-Ihara relations
for p-adic multi-zeta values,' J. Number Theory 133 (2013),
1435-1483.
- S. Ding and W. Liu, `Algorithms for some
Euler-type identities for multiple zeta values,' Journal of Applied
Mathematics, 2013, art. 802791 (7 pp.)
- Y. Takeyama, `A restricted sum formula for a
q-analogue of multiple zeta values,'
in Symmetries, Integrable Systems and Representations,
K. Iohara et. al. (eds.), Springer Proc. in Math. and Stat. 40,
Springer, London, 2013, pp. 561-573;
preprint 1112.0118[NT].
- L. Guo and P. Lei, `Sixfold restricted sum
formula for multiple zeta values at even integers,' J. Lanzhou U.
(Nat. Sci.) 49 (2013), 100-102.
- M. Eie and C-S. Wei, `Generalizations of Euler
decomposition and their applications,' J. Number Theory 133 (2013),
2475-2495.
- Z-h. Li, `Some identities in the harmonic
algebra concerned with multiple zeta values,' Int. J. Number Theory
9 (2013), 783-798.
- S. Yamamoto and K. Tasaka, `On some multiple
zeta-star values of one-two-three indices,' Int. J. Number Theory 9
(2013), 1171-1184;
preprint 1203.1115[NT].
- Y. L. Ong, M. Eie, and W-C. Liaw, `On generalizations
of weighted sum formulas of multiple zeta values,' Int. J. Number Theory
9 (2013), 1185-1198.
- S. Yamamoto, `Interpolation of multiple zeta
and zeta-star values,' J. Algebra 385 (2013), 102-114;
preprint 1203.1118[NT].
- Chung-Yi Chang, `Some new proofs of the sum formula
and the restricted sum formula,'
Tamkang J. Math. 44 (2013), 123-129.
- M. Zakrzewski and H. Żołądek,
`Multiple zeta values and the WKB method,' in Analytic and Algebraic
Geometry, T. Krasiński and S. Spodzieja (eds.), Faculty of Math.
and Comp. Sci., University of Łódź, Łódź,
2013, pp. 155-202.
- S. Leurent and D. Volin, `Multiple zeta functions
and double wrapping in planar N = 4 SYM,' Nuclear Phys. B 875 (2013),
757-789;
preprint 1302.1135[hep-th].
- P. Deligne, `Multizêtas, d'après Francis
Brown,' Astérisque 352 (2013), 161-185 (Sém. Bourbaki
no. 1045).
- M. Marcolli and J. Su, `Arithmetic of Potts
model hypersurfaces,' Int. J. Geom. Methods Mod. Phys. 10 (2013),
art. 1350005 (22 pp.);
preprint 1112.5667[math-ph].
- Y. Takeyama, `The algebra of a q-analogue
of multiple harmonic series,'
SIGMA 9 (2013),
Paper 0601 (15 pp).
- Y. L. Ong, `On vector generalizations of
Vandermonde's convolution,' Taiwanese J. Math. 17 (2013), 1677-1691.
- J. Brödel, O. Schlotterer, and S. Stieberger,
`Polylogarithms, multiple zeta values and superstring amplitudes,'
Fortschr. Phys. 61 (2013), 812-870;
preprint 1304.7267[hep-th].
- M. Eie, The Theory of Multiple Zeta Values with
Applications in Combinatorics, Monographs in Number Theory 7, World
Scientific, Singapore, 2013.
- D. Broadhurst, Multiple zeta values and modular
forms in quantum field theory, in
Computer Algebra in Quantum Field Theory, C. Schneider and
J. Blümlein (eds.), Springer, Vienna, 2013, pp. 33-72.
- M. Eie, T-Y. Lee and Y. L. Ong, `Applications
of shuffle products of multiple zeta values in combinatorics,' J. Comb.
Number Theory 4 (2013), 145-160.
- K. Onodera, `Mordell-Tornheim multiple zeta values
at non-positive integers,' Ramanujan J. 32 (2013), 221-226.
- S. Yamamoto, `Explicit evaluation of certain
sums of multiple zeta-star values,' Funct. Approx. Comment. Math. 49
(2013), 283-289;
preprint 1203.1111[NT].
- T. Onozuka, `Analytic continuation of multiple
zeta-functions and the asymptotic behavior at non-positive integers,'
Funct. Approx. Comment. Math. 49 (2013), 331-348;
preprint 1205.2768[NT].
- L. Schneps, `Dual-depth adapted irreducible
formal multizeta values,' Math. Scand. 113 (2013), 53-62.
- Z-h. Li, `Another proof of Zagier's evaluation
formula of the multiple zeta values ζ(2,...,2,3,2,...,2),'
Math. Research Lett. 20 (2013), 947-950;
preprint 1204.2060[NT].
- O. Schlotterer and S. Stieberger, `Motivic
multiple zeta values and superstring amplitudes,' J. Phys. A: Math. Theor.
46 (2013), art. 475401 (37 pp);
preprint 1205.1516[hep-th].
- J. M. Drummond and E. Ragoucy, `Superstring amplitudes
and the associator,'
J. High Energy Phys. (2013) 08#135 (20 pp).
- N. Wakabayashi, `On generating functions for
certain sums of multiple zeta values and a formula of S. Zlobin,' in
Exact WKB Analysis and Microlocal Analysis, T. Koike (ed.),
RIMS Kōkyūroku Bessatsu B37 (2013), 223-229.
- L. Guo, S. Paycha, and B. Zhang, `Conical zeta values
and their double subdivision relations,' Adv. Math. 252 (2014), 343-381;
preprint 1301.3370[NT].
- S. Ding, L. Feng, and W. Liu, `A combinatorial
identity of multiple zeta values with even arguments,'
Electronic J. Combinatorics 21(2) (2014), P27 (11 pp).
- D. H. Bailey, J. M. Borwein, and R. E. Crandall,
`Computation and theory of extended Mordell-Tornheim-Witten sums,'
Math. Comp. 83 (2014), 1795-1821.
- S. Ding, `An algorithm of some Euler-type
identities for multiple Hurwitz-zeta values' (Chinese), Adv. Math. (China)
43 (2014), 534-542.
- O. Bouillot, `The algebra of multitangent
functions,' J. Algebra 410 (2014), 148-238;
preprint 1404.0992[NT].
- L. Guo, P. Lei, and B. Ma,`Applications of
shuffle product to restricted decomposition formulas for multiple
zeta values,' J. Number Theory 144 (2014), 219-233.
preprint 1401.7397[NT].
- J. Brödel, O. Schlotterer, S. Stieberger,
and T. Terasoma, `All order alpha'-expansion of superstring trees from
the Drinfeld associator,' Phys. Rev. D 89 (2014), art. 066014;
preprint 1304.7304[hep-th].
- S. Stieberger, `Closed superstring amplitudes,
single-valued multiple zeta values and Deligne associator,' J. Phys. A:
Math. Theor. 47 (2014), art. 155401 (15 pp);
preprint 1310.3259[hep-th].
- A. Okounkov, `Hilbert schemes and multiple
q-zeta values,' Funct. Anal. Appl. 48 (2014), 138-144;
preprint 1404.3873[AG].
- Y. Komori, K. Matsumoto and H. Tsumura,
`A study on multiple zeta values from the viewpoint of zeta-functions
of root systems,' Funct. Approx. Comment. Math. 51 (2014), 43-76;
preprint 1205.0182[NT].
- H. Yuan and J. Zhao, `Restricted sum formula
of multiple zeta values,' Funct. Approx. Comment. Math. 51 (2014),
111-119;
preprint 1303.3607[NT].
- F. C. S. Brown, `Single-valued motivic periods
and multiple zeta values,'
Forum Math. Sigma 2
(2014), e25 (37 pp).
- M. Waldschmidt, `Una introducción elemental
a valores zeta múltiples,' Gac. R. Soc. Mat. Esp. 17 (2014),
549-557.
- D. Jarossay, `Double mélange des
multizêtas finis et multizêtas symétrisés,'
C. R. Math. Acad. Sci. Paris, Ser. I 352 (2014), 767-771.
- O. Bouillot, `The algebra of Hurwitz multizeta
functions,' C. R. Math. Acad. Sci. Paris, Ser.I 352 (2014), 865-869;
preprint 1404.0997[CO].
- B. Sadaoui, `Multiple zeta values at the non-positive
integers,' C. R. Math. Acad. Sci. Paris, Ser.I 352 (2014), 977-984.
- F. C. S. Brown, `Motivic periods and
P1\{0,1,∞},' in Proceedings of the International
Conference of Mathematicians (Seoul, 2014), Vol. 2, S. Y. Jang
et. al. (eds.), Kyung Moo Sa, Seoul, 2014, pp. 309-332;
preprint 1407.5165[NT].
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Lattice sums of hyperplane arrangements,' Comment. Math. Univ. St.
Pauli 63 (2014), 161-213;
preprint 1408.1801[NT].
- A. Dil and K. N. Boyadzhiev, `Euler sums of
hyperharmonic numbers,' J. Number Theory 147 (2015), 490-498.
- S. Charlton, `ζ({{2}m,1,
{2}m,3}n,{2}m)/π4n+2m(2n+1)
is rational', J. Number Theory 148 (2015), 463-477;
preprint 1306.6775[NT].
- F. C. S. Brown and O. Schnetz, `Single-valued
polylogarithms and a proof of the zig-zag conjecture,'
J. Number Theory 148 (2015), 478-506.
- C-L. Chung, M. Eie, W-C. Liaw, and Y. L. Ong,
`Decomposition of products of Riemann zeta values,' J. Number Theory
150 (2015), 1-20.
- Y. Komori, K. Matsumoto, and H. Tsumura, `On
Witten multiple zeta-functions associated with semisimple Lie algebras V,'
Glasgow Math. J. 57 (2015), 107-130;
preprint 1302.4285[NT].
- V. C. Bui, G. H. E. Duchamp, and V. Hoang Ngoc
Minh, `Structure of polyzetas and explicit representation on transcendence
bases of shuffle and stuffle algebras,' in Proceedings of the ACM
International Symposium on Symbolic and Algebraic Computation (Bath, 2015)
ACM, New York, 2015, pp. 93-100.
- Kh. Hessami Pilehrood and T. Hessami
Pilehrood, `On q-analogues of two-one formulas for multiple harmonic
sums and multiple zeta star values,' Monatsh. Math. 176 (2015), 275-291;
preprint 1304.0269[NT].
- C. E. Sandifer, `Multi-zeta functions,' in
How Euler Did Even More, MAA Spectrum, Math. Assn. of America,
Washington, DC, 2015, pp. 88-94.
- V. Baldoni, A. Boysal, and M. Vergne,
`Multiple Bernoulli series and volumes of moduli spaces of flat bundles
over surfaces,' J. Symbolic Comput. 68 (2015), 27-60;
preprint 1301.4127[RT].
- K-W. Chen, `Applications of stuffle product
of multiple zeta values,' J. Number Theory 153 (2015), 107-116.
- J. Zhao, `Sum formula of multiple Hurwitz-zeta
values,' Forum Math. 27 (2015), 929-936;
preprint 1207.2368[NT].
- I. Horozov, `Noncommutative Hilbert modular symbols,'
Algebra Number Theory 9 (2015), 317-370.
- W. Zudilin, `Multiple q-zeta brackets,'
Mathematics 2015,
119-130.
- L. Guo, P. Lei, and J. Zhao, `Families of weighted
sum formulas for multiple zeta values,' Int. J. Number Theory 11
(2015), 997-1025;
preprint 1401.6461[NT].
- J. Castillo Medina, K. Ebrahimi-Fard,
and D. Manchon, `Unfolding the double shuffle structure of qMZVs,'
Bull. Aust. Math. Soc. 91 (2015), 368-388;
preprint 1310.1330[NT].
- J. Castillo Medina, K. Ebrahimi-Fard, and D. Manchon,
`On Euler's decomposition formula for qMZVs,' Ramanujan J. 37
(2015), 365-389;
preprint 1309.2759[NT].
- J. Halverson, H. Jockers, J. M. Lapan, and
D. R. Morrison, `Perturbative corrections to Kähler moduli spaces,'
Commun. Math. Phys. 333 (2015), 1563-1584;
preprint 1308.2137[hep-th].
- M. Eie, W-C. Liaw, and C-S. Wei, `Double weighted
sum formulas of multiple zeta values,' Abh. Math. Semin. Univ. Hambg.
85 (2015), 23-41.
- M. Rahmani, `On p-Bernoulli numbers and
polynomials,' J. Number Theory 157 (2015), 350-366.
- D. H. Bailey and J. M. Borwein, `Computation and
theory of Mordell-Tornheim-Witten sums II,' J. Approx. Theory 197
(2015), 115-140.
- J. Singer, `On q-analogues of multiple
zeta values,' Funct. Approx. Comment. Math.53 (2015), 135-165.
- O. Bouillot, `On Hurwitz multizeta functions,'
Adv. Appl. Math. 71 (2015), 68-124.
- A. Salerno, D. Schindler, A. Tucker,
`Symmetries of rational functions arising in Écalle's study of
multiple zeta values,' in Women in Numbers Europe (Marseilles, 2013),
M. J. Bertin et. al (eds.), Springer, New York, 2015, pp. 153-166.
- Y. Sasaki, `Zeta Mahler measures, multiple
zeta values, and L-values,' Int. J. Number Theory 11 (2015),
2239-2246.
- K-W. Chen, C-L. Chung, and M. Eie, `Combinatorial
implications of decomposition theorems of multiple zeta values,'
J. Comb. Number Theory 7 (2015), 111-126.
- S. Carr, H. Gangl, and L. Schneps, `On the
Broadhurst-Kreimer generating series for multiple zeta values,' in
Feynman Amplitudes, Periods and Motives (Madrid, 2012), L.
Álvarez-Cónsul et. al. (eds.), Contemp. Math. 648,
Amer. Math. Soc., Providence, RI, 2015, pp. 57-78;
preprint.
- I. Soudères, `Multiple zeta value
cycles in low weight,' in
Feynman Amplitudes, Periods and Motives (Madrid, 2012), L.
Álvarez-Cónsul et. al. (eds.), Contemp. Math. 648,
Amer. Math. Soc., Providence, RI, 2015, pp. 203-248.
- M-S. Kim, `On the special values of Tornheim's
multiple series,' J. Appl. Math. Inform. 33 (2015), 305-315.
- M. Eie, T-Y. Lee, and Y. L. Ong, `Shuffle
products of a single zeta value and multiple zeta values of height one
with applications in combinatorics,' Southeast Asian Bull. Math. 39
(2015), 613-624.
- S. Ikeda and K. Matsuoka, `On certain mean
values of multiple zeta-functions,' Comment. Math. Univ. St. Pauli 64
(2015), 19-27.
- V. C. Bui, G. H. E. Duchuamp, and V. Hoang
Ngoc Minh, `Computation tool for the q-deformed quasi-shuffle
algebras and representations of the structure of MZVs,' ACM Commun. Computer
Algebra 49 (2015), 117-120.
- Y. Komori, K. Matsumoto and H. Tsumura,
`Zeta-functions of weight lattices of compact connected semisimple Lie
groups,'
Šialiai Math. Semin. 10(18) (2015), 149-179.
- H. Yuan and J. Zhao, `New families of
weighted sum formulas for multiple zeta values,' Rocky Mountain J. Math.
45 (2015), 2065-2096;
preprint 1303.3608[NT].
- M. Jaban and S. Sneh Bala, `Some infinite sums
identities,' Czechoslovak Math. J. 65 (2015), 819-827.
- S. Ünver, `A note on the algebra
of p-adic multi-zeta values,' Commun. Number Theory Phys. 9
(2015), 689-705;
preprint 1410.8648[NT].
- K-W. Chen, C-L. Chung, and M. Eie, `Sum
formulas and duality theorems of multiple zeta values,' J. Number Theory
158 (2016), 33-53.
- T. Tanaka and N. Wakabayashi, `Kawashima's relations
for interpolated multiple zeta values,' J. Algebra 447 (2016),
424-431.
- C. Glanois, `Motivic unipotent fundamental
groupoid of Gm\μN for
N=2,3,4,6,8 and Galois descents,' J. Number Theory 160
(2016), 334-384.
- M. Eie, W-C. Liaw, and Y. L. Ong, `The
decomposition theorem of products of multiple zeta values of height one,'
Int. J. Number Theory 12 (2016), 15-26.
- J. Singer, `On Bradley's q-MZVs and
a generalized Euler decomposition formula,' J. Algebra 454 (2016),
92-122.
- S. Ünver, `Cyclotomic p-adic
multi-zeta values in depth two,' Manuscripta Math. 149 (2016),
405-411;
preprint 1302.6406[NT].
- Chung-Yie Chang, `Shuffle product formulas
of two multiples of height-one multiple zeta values,' Taiwanese J. Math.
20 (2016), 13-24.
- T. Machide, `Congruence identities of
regularized multiple zeta values involving a pair of index sets,'
Int. J. Number Theory 12 (2016), 409-426;
preprint 1404.5048[NT].
- K. Ebrahimi-Fard, D. Manchon, and J. Singer,
`Renormalization of q-regularized multiple zeta values,'
Lett. Math. Phys. 106 (2016), 365-380;
preprint 1508.02144[NT].
- M. Eie and T-Y. Lee, `Identities among restricted
sums of multiple zeta functions,' J. Number Theory 164 (2016),
208-222.
- K. Sentil Kumar, `Order structure and
topological properties of the set of multiple zeta values,'
Int. Math. Res. Notices 2016, 1541-1562.
- M. Kaneko and M. Sakata, `On multiple zeta values
of extremal height,' Bull. Aust. Math. Soc. 93 (2016), 186-193;
preprint 1505.01014[NT].
- G. Puhlfürst and S. Stieberger, `Differential
equations, associators, and recurrences for amplitudes,'
Nuclear Phys. B 902 (2016), 186-245.
- C. Xu, Y. Yan, and Z. Shi, `Euler sums and
integrals of polylogarithm functions,' J. Number Theory 165 (2016),
84-108.
- H. Yuan and J. Zhao, `Bachmann-Kühn's
brackets and multiple zeta values at level N,' Manuscripta Math.
150 (2016), 177-210.
- R. P. Schneider, `Partition zeta functions,'
Res. Number Theory 2:9 (2016) (17 pp.)
- J-C. Novelli and J-Y. Thibon, `Binary shuffle
bases for quasi-symmetric functions,' Ramanujan J. 40 (2016), 207-225;
preprint 1305.5032[CO].
- C-L. Chung, M. Eie, T-Y. Lee, `Another
expression of the restricted sum formula of multiple zeta values,'
J. Number Theory 166 (2016), 452-472.
- J. Zhao, Multiple zeta functions, multiple
polylogarithms, and their special values, World Scientific, Singapore,
2016.
- C-L. Chung and Y. L. Ong, `On vectorized weighted
sum formulas of multiple zeta values,' Taiwanese J. Math. 20 (2016),
243-261.
- K. Ebrahimi-Fard, D. Manchon, and J. Singer,
`Duality and (q-)multiple zeta values,' Adv. Math. 298
(2016), 254-285;
preprint 1512.00753[NT].
- K. Tasaka, `On linear relations among totally
odd multiple zeta values related to period polynomials,'
Kyushu J. Math. 70 (2016), 1-28.
(Corrigendum Kyushu J. Math. 73 (2019), 219.)
- H. Murahara, `A note on finite real multiple
zeta values,'
Kyushu J. Math. 70 (2016), 197-204.
- H. Bachmann and U. Kühn, `The algebra of
generating functions for multiple divisor sums and applications to
multiple zeta values,' Ramanujan J. 40 (2016), 605-648;
preprint 1309.3920[NT].
- J. Mehta, B. Saha, and G. K. Viswanadham,
`Analytic properties of multiple zeta functions and certain weighted
variants, an elementary approach,' J. Number Theory 168 (2016),
487-508.
- M. Genčev, `On restricted sum formulas
for multiple zeta values with even arguments,' Arch. Math. (Basel) 107
(2016), 9-22.
- S. Yasuda, `Finite real multiple zeta values
generate the whole space Z,' Int. J. Number Theory 12
(2016), 787-812;
preprint 1403.1134[NT].
- S. Fischler and T. Rivoal, `Multiple zeta values,
Padé approximation and Vasilyev's conjecture,'
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 1-24;
preprint 1309.2534[NT].
- T. Nakamura and Ł. Pańkowski,
`On complex zeroes off the critical line for non-monomial polynomial of
zeta functions,' Math. Z. 284 (2016), 23-39;
preprint 1212.5890[NT].
- S. Ikeda and K. Matsuoka, `On functional
relations for Witten multiple zeta-functions,' Tokyo J. Math. 39
(2016), 17-38.
- T. Okamoto and T. Onozuka, `Functional equation
for the Mordell-Tornheim multiple zeta-function,' Funct. Approx. Comment.
Math. 55 (2016), 227-241.
- M. E. Hoffman, `Sums of products of Riemann zeta
tails,' Mediterr. J. Math. 13 (2016), 2771-2781;
preprint 1602.03399[NT].
- J. Alm, `A universal
A∞-structure on Batalin-Vilkovisky algebras with multiple
zeta value coefficients,' Int. Math. Res. Notices 2016, 7414-7470;
preprint 1501.02916[QA].
- T. Miyagawa, `Analytic properties of
generalized Mordell-Tornheim type of multiple zeta-functions and
L-functions,' Tsukuba J. Math. 40 (2016), 81-100.
- I. Todorov, `Hyperlogarithms and periods in Feynman
amplitudes,' in Lie Theory and its Applications in Physics (Dobrev, 2015)
V. Dobrev (ed.), Springer Proc. in Math. and Stat. 191, Springer,
New York, 2016, pp. 151-167;
preprint 1611.09323[math-ph].
- F. Zerbini, `Single-valued multiple zeta values
for genus 1 superstring amplitudes,' Commun. Number Theory Phys. 10
(2016), 703-737;
preprint 1512.05689[hep-th].
- Kh. Hessami Pilehrood, T. Hessami Pilehrood,
and J. Zhao,`On q-analogs of some some families of multiple harmonic
sum and multiple zeta star identities,' Commun. Number Theory Phys. 10
(2016), 805-832;
preprint 1307.7985[NT].
- F. C. S. Brown, `Irrationality proofs for zeta
values, moduli spaces and dinner parties,' Mosc. J. Comb. Number Theory
6 (2016), 102-165;
preprint 1412.6508[NT].
- T. Ito, `On analogues of the Arakawa-Kaneko zeta
functions of Mordell-Tornheim type,' Comment. Math. Univ. St. Pauli
65 (2016), 111-120;
preprint 1603.04145[NT].
- B. Enriquez and P. Lochak, Homology of
depth-graded motivic Lie algebras and koszulity,' J. Théor. Nombres
Bordeaux 28 (2016), 829-850;
preprint 1407.4060[RT].
- C. Xu, M. Zhang, and W. Zhu, `Some evaluation of
harmonic number sums,' Integral Transforms Spec. Funct. 27 (2016),
937-955.
- H. Yuan and J. Zhao, `Multiple divisor
functions and multiple zeta functions at level N,'
Manuscripta Math. 150 (2016), 177-210;
preprint 1408.4983[NT].
- P. Akhilesh, `Double tails of multiple zeta values,'
J. Number Theory 170 (2017), 228-249.
- Z-h. Li and C. Qin, `Shuffle product formulas
of multiple zeta values,' J. Number Theory 171 (2017), 79-111;
preprint 1603.05786[NT].
- N. Wakabayashi, `Interpolation of q-analogue
of multiple zeta and zeta-star values,' J. Number Theory 174 (2017),
26-39;
preprint 1609.01197[NT].
- C. Xu and Z-h. Li, `Tornheim type series and
nonlinear Euler sums, J. Number Theory 174 (2017), 40-67.
- I. Horozov, `Multiple Dedekind zeta values,'
J. reine angew. Math. 722 (2017), 65-104;
preprint 1101.1594[NT].
- F. C. S. Brown, `Zeta elements in depth 3
and the fundamental Lie algebra of the infinitesimal Tate curve,'
Forum Math. Sigma 5
(2017), e1 (56 pp).
- H. Bachmann and H. Tsumura, `On multiple series of
Eisenstein type,' Ramanujan J. 42 (2017), 479-489.
- M. E. Hoffman, `Harmonic-number summation
identities, symmetric functions, and multiple zeta values,' Ramanujan J.
42 (2017), 501-526;
preprint 1602.03198[NT].
- K-W. Chen, `Generalized harmonic numbers and
Euler sums,' Int. J. Number Theory 13 (2017), 513-528.
- Kh. Hessami Pilehrood and T. Hessami Pilherood,
`An alternative proof of a theorem of Zagier,' J. Math. Anal. Appl. 449
(2017), 168-175.
- M. Genčev, `Transformation of generalized
multiple Riemann zeta type sums with repeated arguments,' J. Math. Anal.
Appl. 449 (2017), 490-513.
- T. Machide, `Identities involving cyclic and
symmetric sums of regularized multiple zeta values,'
Pacific J. Math. 286 (2017), 307-359;
preprint 1502.02505[NT].
- C-L. Chung and Y. L. Ong, `Decomposition theorems
produced from differential operators,' J. Number Theory 175 (2017),
200-222.
- A. Huber and S. Müller-Stach, Periods and
Nori Stacks, Springer, New York, 2017.
- H. Murahara, `Derivation relations for finite
multiple zeta values,' Int. J. Number Theory 13 (2017), 419-427;
preprint 1512.08696[NT].
- H. Furusho, Y. Komori, K. Matsumoto, and H. Tsumura,
`Desingularization of complex multiple zeta-functions,' Amer. J. Math.
139 (2017), 147-173;
preprint 1508.06920[NT].
- M. E. Hoffman, `On multiple zeta values of even
arguments,' Int. J. Number Theory 13 (2017), 705-716;
preprint 1205.7051[NT].
- L. Guo, S. Paycha, and B. Zhang, `Algebraic
Birkhoff factorization and the Euler-Maclaurin formula on cones,'
Duke Math. J. 166 (2017), 537-571;
preprint 1306.3420[math-ph].
- C. Xu, `Multiple zeta values and Euler sums,'
J. Number Theory 177 (2017), 443-478;
preprint 1609.05863[NT].
- K-W. Chen, C-L. Chung, and M. Eie, `Sum formulas
of multiple zeta values with arguments multiples of a common positive
integer,' J. Number Theory 177 (2017), 479-496;
preprint 1608.01412[NT].
- K-W. Chen and C-L. Chung, `Sum relations of multiple
zeta star values with even arguments,' Mediterr. J. Math. 14 (2017),
14:110 (13 pp).
- Z-h. Li and C. Qin, `Some relations of interpolated
multiple zeta values,'
Internat. J. Math.
28 (2017), art. 175033 (25 pp).
- Z. Shen and L. Jia, `Some identities for multiple
Hurwitz zeta values,' J. Number Theory 179 (2017), 256-267.
- M. Sakata, `Taylor series for the reciprocal gamma
function and multiple zeta values,'
Proc. Japan Acad.
Ser. A Math. Sci. 93 (2017), 47-49.
- L. Jiu, `Integral representations of equally
positive integer-indexed harmonic sums at infinity,'
Res. Number Theory 3:10 (2017) (4 pp).
- C. Berg and R. Szwarc, `Symmetric moment problems and
a conjecture of Valent,' Sb. Math. 208 (2017), 335-359;
preprint 1509.06540[CA].
- F-Y. Yang, `Shuffle relations and the sum of multiple
zeta values,' Southeast Asian Bull. Math. 41 (2017), 589-599.
- T. Onozuka, `The multiple Dirichlet product and
the multiple Dirichlet series,' Int. J. Number Theory 13 (2017),
2181-2193;
preprint 1601.05924[NT].
- M. Felder, `On the irrationality of certain
coefficients of the Alekseev-Torossian associator,' J. Lie Theory 27
(2017), 501-528;
preprint 1603.07193[NT].
- E. A. Ulanskii, `A new proof of the theorem on
Ohno relations of MZVs,' Mosc. J. Comb. Number Theory 7 (2017),
79-88.
- M. Genčev, `Generalization of the non-local
derangement identity and applications to multiple zeta-type series,'
Monatsh. Math. 184 (2017), 217-243.
- M. Ono, `Finite multiple zeta values associated
with 2-colored rooted trees,' J. Number Theory 181 (2017), 99-116;
preprint 1609.09168[NT].
- N. Wakabayashi, `Double shuffle and Hoffman's
relations for interpolated multiple zeta values,' Int. J. Number Theory
13 (2017), 2245-2251.
- M. Eie, W-C. Liaw, and Y. L. Ong, `Several
weighted sum formulas for multiple zeta values, Int. J. Number Theory
13 (2017), 2253-2264.
- I. Horozov, `Double shuffle relations for multiple
Dedekind zeta values,' Acta Arithmetica 180 (2017), 201-227;
preprint 1311.4019[NT].
- J. Mehta and G. K. Viswanadham, `Analytic
continuation of multiple Hurwitz zeta functions,' J. Math. Soc. Japan
69 (2017), 1431-1442.
- H. Yu, L. Guo, and J. Zhao, `Rota-Baxter
algebras and left weak composition quasi-symmetric functions,'
Ramanujan J. 44 (2017), 567-596;
preprint 1601.06030[CO].
- C. Xu and Xiaolian Zhou, `Explicit evaluations of sums
of series tails,' Anal. Math. 43 (2017), 687-707;
preprint 1701.03725[NT].
- O. Bouillot and J. Écalle, `Invariants
of identity-tangent diffeomorphisms expanded as series of multitangents
and multizetas,' in Resurgence, Physics and Numbers (Pisa, 2015),
CRM Ser. 20, F. Fauvet et. al. (eds.), Edizioni della Normale,
Pisa, 2017, pp. 109-232.
- L. Guo, S. Paycha, and B. Zhao, `Renormalized conical
zeta values,' in Resurgence, Physics and Numbers (Pisa, 2015),
CRM Ser. 20, F. Fauvet et. al. (eds.), Edizioni della Normale,
Pisa, 2017, pp. 299-327;
preprint 1602.04910[math-ph].
- J. Alm and D. Petersen, `Brown's dihedral moduli
space and freedom of the gravity operad,' Ann. Sci. Éc. Norm.
Supér. (4) 50 (2017), 1081-1122.
- C-L. Chung and M. Eie, `Some variations of multiple
zeta values,' Rocky Mountain J. Math. 47 (2017), 2107-2131.
- C-L. Chung and M. Eie, `Duality theorems of
multiple zeta values with parameters,' New Zealand J. Math. 47
(2017), 87-95;
preprint 1607.00736[NT].
- H. Bachmann, `Double shuffle relations for
q-analogues of multiple zeta values, their derivatives and
the connection to multiple Eisenstein series,' in Various Aspects of
Multiple Zeta Value, H. Furusho (ed.), RIMS Kōkyūroku 2015
(2017), pp. 22-43;
preprint 1609.09182[NT].
- S. Kadota, `Certain weighted sum formulas for
multiple zeta values with some parameters,' Comment. Univ. St. Pauli
66 (2017), 1-13;
preprint 1512.08345[NT].
- E. Panzer and O. Schnetz, `The Galois coaction
on φ4 periods,' Commun. Number Theory Phys. 11
(2017), 657-705;
preprint 1603.04289[hep-th].
- S. Yamamoto, `Multiple zeta-star values
and multiple integrals,' in Various Aspects of Multiple Zeta Values
(Kyoto, 2013), K. Ihara (ed.), RIMS Kōkyūroku Bessatsu
B68 (2017), pp. 3-14;
preprint 1405.6499[NT].
- Y. Sumino, `Singularities and multiple zeta
values in Feynman loop integrals,' in Various Aspects of Multiple
Zeta Values (Kyoto, 2013), K. Ihara (ed.),
RIMS Kōkyūroku Bessatsu B68 (2017), pp. 15-25.
- H. Furusho, Y. Komori, K. Matsumoto and
H. Tsumura, `Desingularization of multiple zeta-functions of generalized
Hurwitz-Lerch type and evaluation of p-adic multiple L-functions
at arbitrary integers,' in Various Aspects of Multiple Zeta Values
(Kyoto, 2013), K. Ihara (ed.), RIMS Kōkyūroku Bessatsu B68
(2017), pp. 27-66;
preprint 1404.4758[NT].
- Z-h. Li, `Relations of multiple zeta values:
from the viewpoint of some special functions,' in Various Aspects of
Multiple Zeta Values (Kyoto, 2013), K. Ihara (ed.),
RIMS Kōkyūroku Bessatsu B68 (2017), pp. 123-133.
- K. Ono, L. Rolen, and R. P. Schneider, `Explorations
in the theory of partition zeta functions,' in Exploring the Riemann
Zeta Function, 190 Years from Riemann's Birth, H. Montgomery
et. al. (eds.), Springer, New York, 2017, pp. 223-264;
preprint 1605.05536[NT].
- L. Jiu, V. H. Moll, and C. Vignat, `A symbolic
approach to multiple zeta values at negative integers,'
J. Symbolic Comput. 84 (2018), 1-13;
preprint 1503.04257[NT].
- Q. T. Lê and N. H. Duc, `Euler reflexion
formulas for motivic multiple zeta functions,' J. Algebraic Geom.
27 (2018), 91-120;
preprint 1510.05463[AG].
- W. Wang and Y. Lyu, `Euler sums and Stirling sums,'
J. Number Theory 185 (2018), 160-193.
- Z. Qin and F. Yu, 'On Okounkov's conjecture
connecting Hilbert schemes of points and multiple zeta values,'
Int. Math. Res. Notices 2018, 321-361;
preprint 1510.00837[AG].
- M. Eie and Y. L. Ong, `Sum formulas of multiple
zeta values with even arguments and polynomial weights,' J. Number
Theory 188 (2018), 247-262.
- H. Bachmann and K. Tasaka, `The double shuffle
relations for multiple Eisenstein series,' Nagoya Math. J. 230
(2018), 180-212;
preprint 1501.03408[NT].
- H. Murahara and M. Sakata, `On multiple zeta
values and finite multiple zeta values of maximal height,' Int. J. Number
Theory 14 (2018), 975-987;
preprint 1612.04071[NT].
- H. Bachmann, `Interpolated Schur multiple zeta
values,' J. Aust. Math. Soc. 104 (2018), 289-307;
preprint 1705.04965[NT].
- Z-h. Li and C. Qin, `Stuffle product formulas
of multiple zeta values,' Taiwanese J. Math. 22 (2018), 529-543;
preprint 1603.08332[NT].
- K. Ebrahimi-Fard, D. Manchon, J. Singer, and
J. Zhao, `Renormalization group for multiple zeta values,'
Commun. Number Theory Phys. 12 (2018), 75-96;
preprint 1511.06720[NT].
- C. Xu, `Computation and theory of Euler sums of
generalized hyperharmonic numbers,' C. R. Math. Acad. Sci. Paris 356
(2018), 243-252;
preprint 1701.03723[NT].
- M. Nakasuji, O. Phuksuwan, and Y. Yamasaki,
`On Schur multiple zeta functions: a combinatoric generalization of
multiple zeta functions,' Adv. in Math. 333 (2018), 570-619;
preprint 1704.08511[NT].
- M. Kaneko and S. Yamamoto, `A new integral-series
identity of multiple zeta values and regularizations,' Selecta Math.
(N. S.) 24 (2018), 2499-2521;
preprint 1605.03117[NT].
- Z-h. Li, `Derivation relations and duality for
the sum of multiple zeta values,' Funct. Approx. Comment. Math. 58
(2018), 215-220;
preprint 1704.06800[NT].
- S. Oi and K. Ueno, `Fundamental solutions of
the Knizhnkik-Zamolodchikov equation of one variable and the Riemann-Hilbert
problem,' Tokyo J. Math. 41 (2018), 1-20;
preprint 1301.5102[CA].
- N. Kawasaki and Y. Ohno, `Combinatorial proofs
of identities for special values of Arakawa-Kaneko multiple zeta functions,'
Kyushu J. Math. 72 (2018), 215-222.
- Y. Komori and H. Tsumura, `On Arakawa-Kaneko
zeta functions associated with GL2(C) and their
functional relations, J. Math. Soc. Japan 70 (2018), 179-213.
- M. Ram Murty, `Transcendental numbers and special
values of Dirichlet series,' in
Number Theory Related to Modular Curves--Momose Memorial Volume
(Barcelona, 2012), J-C. Lario et. al (eds.),
Contemp. Math. 701, Amer. Math. Soc., Providence, RI, 2018, pp. 193-218.
- G. Combariza, `A few conjectures about the multiple
zeta values,' ACM Commun. Comput. Algebra 52 (2018), 11-20.
preprint 1207.1735[NT].
- G. K. Viswanadham, `Products of weighted multiple
zeta functions,' Bull Sci. Math. 147 (2018), 26-39.
- H. Furusho, `On the coefficients of the
Alekseev-Torossian associator,' J. Algebra 506 (2018), 364-378;
preprint 1708.03231[QA].
- C. Xu and Y. Cai, `On harmonic numbers and nonlinear
Euler sums,' J. Math. Anal. Appl. 466 (2018), 1009-1042;
preprint 1609.04924[NT].
- K. Onodera, `On generalized Mordell-Tornheim zeta
functions,' Ramanujan J. 47 (2018), 201-219.
- H. Bachmann and Y. Yamasaki, `Checkerboard
style Schur multiple zeta values and odd single zeta values,' Math. Z.
290 (2018), 1173-1197;
preprint 1711.04746[NT].
- M. Igarashi, `Note on relations among multiple
zeta(-star) values,' Ital. J. Pure Appl. Math. 39 (2018), 710-756;
preprint 1106.0481[NT].
- M. Kaneko and H. Tsumura, `Multi-poly-Bernoulli
numbers and related zeta functions,' Nagoya Math. J. 232 (2018),
19-54;
preprint 1503.02156[NT].
- T. Komatsu, `Incomplete multi-poly-Bernoulli
numbers and multiple zeta values,' Bull. Malays. Math. Sci. Soc. 41
(2018), 2029-2040.
- M. Eie and T-Y. Lee, `Sum formulas of multiple
zeta values with selected arguments,' Int. J. Number Theory 14 (2018),
2617-2630.
- H. Bachmann and T. Tanaka, `Rooted tree maps and
the derivation relation for multiple zeta values,' Int. J. Number Theory
14 (2018), 2657-2662;
preprint 1712.01601[NT].
- Y. Yamasaki, `On a generalization of multiple
zeta functions from the viewpoint of symmetric functions,' in
Representation Theory and Combinatorics, A. Wachi (ed.),
RIMS Kōkyūroku 2075 (2018), pp. 168-178.
- N. Kawasaki and T. Tanaka, `On the duality and
the derivation relations for multiple zeta values,' Ramanujan J.
47 (2018), 651-658;
preprint 1703.03956[NT].
- B. Enriquez and H. Furusho, `A stabilizer
interpretation of double shuffle Lie algebras,' Int. Math. Res. Notices
2018, 6970-6907;
preprint 1605.02838[QA].
- S. Ikeda and K. Matsuoka, `On the functional
relations for the Euler-Zagier multiple zeta-functions,' Tokyo J. Math.
41 (2018), 477-485.
- H. Bachmann, Y. Takeyama, and K. Tasaka,
`Cyclotomic analogues of finite multiple zeta values,' Compos. Math.
154 (2018), 2701-2721;
preprint 1707.05008[NT].
- R. Umezawa, `On an analog of the Arakawa-Kaneko
zeta function and relations of some multiple zeta values,' Tsukuba J. Math.
42 (2018), 259-294;
preprint 1803.11441[NT].
- F. C. S. Brown, `A class of non-holomorphic
modular forms I,' Res. Math. Sci. 5 (2018), paper 7 (40 pp).
preprint 1707.01230[NT].
- F. C. S. Brown, `A class of non-holomorphic
modular forms III: real analytic cusp forms for SL2(Z),'
Res. Math. Sci. 5 (2018), paper 34 (36 pp).
- S. Ünver, `Cyclotomic p-adic multi-zeta
values, J. Pure Appl. Algebra 223 (2019), 489-503;
preprint 1701.05729[NT].
- M. Hirose, K. Iwaki, N. Sato, and K. Tasaka,
`Duality/sum formulas for iterated integrals and their application to
multiple zeta values,' J. Number Theory 195 (2019), 72-83;
preprint 1704.06387[NT].
- C. Xu, `Evaluations of nonlinear Euler sums of
weight ten,' Appl. Math. Comput. 346 (2019), 594-611;
preprint 1703.00254[NT].
- N. Komiyama, `An equivalence between desingularized
and renormalized values of multiple zeta functions at negative integers,'
Int. Math. Res. Notices 2019, 551-577;
preprint 1612.09407[NT].
- M. Hirose and N. Sato, `Hoffman's conjectural
identity,' Int. J. Number Theory 15 (2019), 167-171;
preprint 1704.06478[NT].
- K-W. Chen, `Generalized Arakawa-Kaneko zeta functions,'
Integral Transforms Spec. Funct. 30 (2019), 282-300;
preprint 1707.06771[NT].
- Z-h. Li and N. Wakabayashi, `Sum of interpolated
multiple q-zeta values,' J. Number Theory 200 (2019), 205-259;
preprint 1710.04025[NT].
- H. Bachmann, `The algebra of bi-brackets and
regularized multiple Eisenstein series,' J. Number Theory 200 (2019),
260-294;
preprint 1504.008138[NT].
- M. Hirose and N. Sato, `Iterated integrals
on P1-{0,1,∞,z} and a class of relations among
multiple zeta values,' Adv. in Math. 342 (2019), 163-182;
preprint 1801.03807[NT].
- Z. Li and C. Qin, `Weighted sum formulas of
multiple zeta values of even arguments,' Math. Z. 291 (2019), 1337-1356;
preprint 1612.06563[NT].
- J-J. Duchamps, J. Pitman, and W. Tang,
`Renewal sequences and record chains related to multiple zeta sums,'
Trans. Amer. Math. Soc. 371 (2019), 5731-5755;
preprint 1707.07776[PR].
- C-L. Chung, `On the sum relation of multiple Hurwitz
zeta functions,' Quaest. Math. 42 (2019), 297-305;
preprint 1609.01362[NT].
- I. Horozov, `Multiple zeta values and ideles,'
Ramanujan J. 49 (2019), 215-230;
preprint NT/0611849.
- M-A. Coppo, `A note on some alternating series
involving zeta and multiple zeta values,' J. Math. Anal. Appl. 475
(2019), 1831-1841.
- S-I. Seki and S. Yamamoto, `A new proof of
the duality of multiple zeta values and its generalizations,' Int. J.
Number Theory 15 (2019), 1261-1265;
preprint 1806.04679[NT].
- J. Li, `The depth structure of motivic multiple
zeta values,' Math. Ann. 374 (2019), 179-209;
preprint 1710.06135[NT].
- T. Machide, `Identity involving symmetric
sums of regularized multiple zeta-star values,' Mosc. J. Comb. Number Theory
8 (2019), 125-136;
preprint 1711.01827[NT].
- M. Kuba and A. Panholzer, `A note on harmonic
number identities, Stirling series and multiple zeta values,'
Int. J. Number Theory 15 (2019), 1323-1348;
preprint 1807.00711[NT].
- M. Genčev, `On some weighted sum
formulas involving general multiple zeta-type series,'
J. Number Theory 205 (2019), 124-147.
- K. Dilcher, A. Straub, and C. Vignat,
`Identities for Bernoulli polynomials related to multiple Tornheim
zeta functions,' J. Math. Anal. Appl. 476 (2019), 569-584;
preprint 1903.11759[CA].
- T. Tanaka, `Rooted tree maps,' Commun. Number Theory
Phys. 13 (2019), 647-666;
preprint 1712.01029[NT].
- H. Murahara and S. Saito, `Restricted sum formula
for finite and symmetric multiple zeta values,' Pacific. J. Math.
303 (2019), 325-335;
preprint 1801.02772[NT].
- Kh. Hessami Pilehrood and T. Hessami Pilehrood,
Generating functions for multiple zeta star values,' J. Théor. Nombres
Bordeaux 31 (2019), 343-360;
preprint 1806.09142[NT].
- T. Machide, `A generating function to generalize
the sum formula for quadruple zeta values,' Tokyo J. Math. 42 (2019),
329-355.
- M. Kaneko, `An introduction to classical and finite
multiple zeta values,' Publ. Math. Besançon, Algèbra et
Théorie des Nombres 2019/1, 103-129;
preprint.
- P. J. Clavier, `Double shuffle relations for
arborified zeta values,' J. Algebra 543 (2020), 111-155;
preprint 1812.00777[NT].
- T. Murakami and H. Murahara, `On a generalization
of a restricted sum formula for multiple zeta values and finite multiple zeta
values,' J. Aust. Math. Soc. 101 (2020), 23-34;
preprint 1803.08751[NT].
- M. Hirose, H. Murahara, and S. Saito,
`Polynomial generalization of the regularization theorem for multiple
zeta values,' Publ. RIMS Kyoto Univ. 56 (2020), 207-215;
preprint 1808.06745[NT].
- T. Wakhare and C. Vignat, `Multiple zeta values
for classical special functions,' Ramanujan J. 51 (2020), 519-551;
preprint 1702.05534[NT].
- M. Hirose, H. Murahara, and T. Murakami, `A cyclic
analogue of multiple zeta values,' Comment. Math. Univ. Sancti Pauli
67 (2020), 147-166;
preprint 1806.10888[NT].
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Zeta-functions of root systems and Poincaré polynomials of
Weyl groups,' Tohoku Math. J. (2)72 (2020), 87-126;
preprint 1707.09719[NT].
- J. Li, `Depth-graded motivic Lie algebra,'
J. Number Theory 214 (2020), 38-55;
preprint 1801.02145[NT].
- L. Jiu, T. Wakhare, and C. Vignat, `Analytic
continuation for multiple zeta values using symbolic representations,'
Int. J. Number Theory 16 (2020), 579-602;
preprint 1903.07215[NT].
- M. Hirose, `Double shuffle relations for refined
symmetric multiple zeta values,' Doc. Math. 25 (2020), 365-380;
preprint 1807.04747[NT].
- M. Hirose and N. Sato, `Algebraic differential
formulas for the shuffle, stuffle and duality relations of iterated integrals,'
J. Algebra 556 (2020), 363-384;
preprint 1801.03165[NT].
- E. D'Hoker and M. B. Green, `Absence of
irreducible multiple zeta-functions in melon modular graph functions,'
Commun. Number Theory Phys. 14 (2020), 315-324;
preprint 1904.06603[hep-th].
- D. Zagier and F. Zerbini, `Genus-zero and
genus-one string amplitudes and special multiple zeta values,'
Commun. Number Theory Phys. 14 (2020), 413-432;
preprint 1906.12339[NT].
- Z-h. Li and E. Pan, `Topological properties of
q-analogues of multiple zeta values,' Int. J. Number Theory
16 (2020), 963-980;
preprint 1808.03901[NT].
- Y. Takeyama, `Derivations on the algebra of
multiple harmonic q-series and their applications,' Ramanujan J.
52 (2020), 41-65;
preprint 1806.04837[NT].
- K. Matsumoto, T. Onozuka, and I. Wakabayashi,
`Laurent series expansions of multiple zeta-functions of Euler-Zagier
type at integer points,' Math. Z. 295 (2020), 623-642;
preprint 1601.05918[NT].
- M. Pallewatta, `On sum formulas for Mordell-Tornheim
zeta values,' Rocky Mountain J. Math. 50 (2020), 225-235.
- W. Chu, `Symmetric functions and multiple zeta values,'
Bull. Aust. Math. Soc. 101 (2020), 426-437.
- H. Bachmann and T. Tanaka, `Rooted tree maps and
the Kawashima relations for multiple zeta values,'
Kyushu J. Math. 74 (2020), 169-176.
- D. Jarossay, `Depth reductions for associators,'
J. Number Theory 217 (2020), 163-192;
preprint 1601.01161[NT].
- H. Bachmann and S. Charlton, `Generalized
Jacobi-Trudi determinants and evaluations of Schur multiple zeta values,'
European J. Combin. 87 (2020), art. no. 103133 (15pp);
preprint 1908.05061[NT].
- M. Hirose, H. Murahara, T. Onozuka, and N. Sato,
`Linear relations of Ohno sums of multiple zeta values,' Indag. Math.
(N. S.) 31 (2020), 556-567;
preprint 1910.07740[NT].
- M. Hirose, H. Murahara, and T. Onozuka, `An
interpolation of Ohno's relation to complex functions,' Math. Scand. 126
(2020), 293-297;
preprint 1808.07203[NT].
- M. Eie, W-C. Liaw, and Y. L. Ong, `A decomposition
of ζ(2n+3) into sums of multiple zeta values,' Rocky Mountain J. Math.
50 (2020), 551-558.
- M. Kijaczko, `Multinomial coefficients,
multiple zeta values, Euler sums and series of powers of the Hurwitz
zeta function,' Funct. Approx. Comment. Math. 62 (2020), 227-245.
- D. Essouabri and K. Matsumoto, `Values at
nonpositive integers of generalized Euler-Zagier multiple zeta-functions,'
Acta Arith. 193 (2020), 109-131;
preprint 1703.07525[NT].
- Z-h. Li and C. Xu, `On q-analogues of
quadratic Euler sums,' Period. Math. Hungar. 81 (2020), 1-19;
preprint 1702.08507[NT].
- P. Banks, E. Panzer, and B. Pym, `Multiple
zeta values in deformation quantization,' Invent. Math. 222
(2020), 79-159;
preprint 1812.11649[NT].
- M. Kaneko and H. Tsumura, `Zeta functions
connecting multiple zeta values and poly-Bernoulli numbers,' in
Various Aspects of Multiple Zeta Values--in honor of Prof. Koji
Matsumoto's 60th birthday, H. Mishou et. al., Adv. Studies
in Pure Math. 84, Math. Soc. Japan, Tokyo, 2020, pp. 181-204;
preprint 1811.07736[NT].
- Y. Ohno and H. Wayama, `Interpolated multiple
zeta functions of Arakawa-Kaneko type,' in
Various Aspects of Multiple Zeta Values--in honor of Prof. Koji
Matsumoto's 60th birthday, H. Mishou et. al., Adv. Studies
in Pure Math. 84, Math. Soc. Japan, Tokyo, 2020, pp. 361-366.
- M. Kato, `On certain two-parameter deformations
of multiple zeta values,' Res. Number Theory 6 (2020), art. 30
(22 pp).
- D. Jarossay, `Pro-unipotent harmonic actions
and dynamical properties of p-adic cyclotomic multiple zeta values,'
Algebra Number Theory 14 (2020), 1711-1746.
- J. Singer and J. Zhao, `Finite and symmetrized
colored multiple zeta values,' Finite Fields Appl. 65 (2020),
art. 101676;
preprint 1512.03691[NT].
- H. Murahara, `On a generalization of the cyclic
sum formula for finte multiple zeta and zeta-star values,'
Indag. Math. (N.S.) 31 (2020), 1144-1154.
- S. Yamamoto, `Integrals associated with
2-posets and applications to multiple zeta values,' in Algebraic
Number Theory and Related Topics 2017, H. Tsunogai et. al. (eds.),
RIMS Kōkyūroku Bessatsu B83 (2020), pp. 27-46.
- N. Komiyama, `Shuffle-type product formulae
of desingularized values of multiple zeta-functions,' in Algebraic
Number Theory and Related Topics 2017, H. Tsunogai et. al. (eds.),
RIMS Kōkyūroku Bessatsu B83 (2020), pp. 83-104;
preprint 1804.05568[NT].
- F. C. S. Brown, `A class of non-holomorphic
modular forms II: equivariant iterated Eisenstein integrals,'
Forum Math. Sigma 8 (2020),
e31 (62 pp);
preprint 1708.03354[NT].
- H. Bachmann, `Multiple Eisenstein series and
q-analogues of multiple zeta values,' in Periods in Quantum
Field Theory and Arithmetic (ICMAT, Madrid, 2014), J. I. Burgos Gil
et. al. (eds.), Springer Proc. in Math. & Stat. 314, Springer,
New York, 2020, pp. 173-235;
preprint 1704.06930[NT].
- H. Bachmann and U. Kühn, `A dimension
conjecture for q-analogues of multiple zeta values,' in
Periods in Quantum Field Theory and Arithmetic (ICMAT, Madrid, 2014),
J. I. Burgos Gil et. al. (eds.), Springer Proc. in Math. & Stat.
314, Springer, New York, 2020, pp. 237-258;
preprint 1708.07464[NT].
- J. Zhao, `Uniform approach to double
shuffle and duality relations of various q-analogs of multiple
zeta values via Rota-Baxter algebras,' in Periods in Quantum Field
Theory and Arithmetic (ICMAT, Madrid, 2014), J. I. Burgos Gil
et. al. (eds.), Springer Proc. in Math & Stat. 314, Springer,
New York, 2020, pp. 259-292;
preprint 1412.8044[NT].
- J. Singer, `q-Analogues of multiple
zeta values and their application in renormalization,' in Periods in
Quantum Field Theory and Arithmetic (ICMAT, Madrid, 2014),
J. I. Burgos Gilet. al. (eds.), Springer Proc. in Math. & Stat. 314,
Springer, New York, 2020, pp. 293-325.
- C. Malvenuto and F. Patras, `Symmetril moulds,
generic group schemes, resummation of MZVs,' in Periods in Quantum
Field Theory and Arithmetic (ICMAT, Madrid, 2014), J. I. Burgos Gil
et. al. (eds.), Springer Proc. in Math. & Stat. 314, Springer,
New York, 2020, pp. 377-398;
preprint 1602.09113[RA].
- A. Salerno and L. Schneps, `Mould theory and
the double shuffle Lie algebra structure,' in Periods in Quantum
Field Theory and Arithmetic (ICMAT, Madrid, 2014), J. I. Burgos Gil
et. al. (eds.), Springer Proc. in Math. & Stat. 314, Springer,
New York, 2020, pp. 399-430;
preprint 1510.05535[QA].
- D. Manchon, `Arborified multiple zeta values,' in
Periods in Quantum Field Theory and Arithmetic (ICMAT, Madrid, 2014),
J. I. Burgos Gil et. al. (eds.), Springer Proc. in Math. & Stat. 314,
Springer, New York, 2020, pp. 469-481;
preprint 1603.01498[CO].
- K-W. Chen, `Generalized harmonic number sums
and quasi-symmetric functions,' Rocky Mountain J. Math. 50 (2020),
1253-1275;
preprint 1812.06685[NT].
- R. Umezawa, `Multiple zeta values and iterated
log-sine integrals,'
Kyushu J. Math. 74 (2020), 233-254.
- D. Jarossay and H. Furusho, `p-Adic
multiple L-functions and cyclotomic multiple harmonic values,'
Int. J. Number Theory 16 (2020), 361-375.
- S. Charlton, `Analogues of cyclic insertion type
identities for multiple zeta star values,'
Kyushu J. Math. 74 (2020), 337-352.
- J. Li, `Iterated integrals on products of one variable
multiple polylogarithms,' Int. J. Number Theory 16 (2020), 2167-2186;
preprint 1906.02018[NT].
- I. Horozov, `Multiple Dedekind zeta values are
periods of Mixed Tate Motives,' in Integrable Systems and Algebraic
Geometry, vol. 2, R. Donagi and T. Shaska (eds.), London Math.
Soc. Lecture Note Series 259, Cambridge University Press, Cambridge, 2020,
pp. 485-498;
preprint 1612.03693[AG].
- N. Tamang, `A simple observation on decomposition
of multiple zeta values,' Indian J. Pure Appl. Math. 51 (2020),
1269-1284.
- M. Kaneko, H. Murahara, and T. Murakami,
`Quasi-derivation relations for multiple zeta values revisited,'
Abh. Math. Semin. Univ. Hambg. 90 (2020), 151-160;
preprint 1907.085959[NT].
- Chieh-Yu Chang, `Periods, logarithms and multiple
zeta values,' in Proceedings of the International Consortium of
Chinese Mathematicians 2017, S. Y. Cheng et. al. (eds.),
International Press, Boston, 2020, pp. 159-181.
- M. Eie and T-Y. Lee, `Some alternating sums of
multiple zeta values of height one,' J. Math. Anal. Appl. 498 (2021),
art. 124957.
- Z-h. Li and C. Qin, `Some relations deduced
from regularized double shuffle relations of multiple zeta values,'
Int. J. Number Theory 17 (2021), 91-146;
preprint 1610.05480[NT].
- M. Ono, S-I. Seki, and S. Yamamoto,
`Truncated t-adic symmetric multiple zeta values and double
shuffle relations,' Res. Number Theory 7 (2021), art. 15 (28 pp).;
preprint 2009.04112[NT].
- M. Hirose, H. Murahara, and T. Onozuka,
`Q-linear relations of specific families of multiple zeta values
and the linear part of Kawashima's relation,' Manuscripta Math.
164 (2021), 455-465;
preprint 1903.04140[NT].
- E. Rowland, R. Yassawi, and C. Krattenthaler,
`Lucas congruences for the Apéry numbers modulo p2,'
Integers 21
(2021), #A20 (15 pp).
- P. Akhilesh, `Multiple zeta values and
multiple Apéry-like sums,' J. Number Theory 226 (2021),
72-138;
preprint 1912.05204[NT].
- M. Kaneko, C. Xu, and S. Yamamoto,
`A generalized regularization theorem and Kawashima's relation for
multiple zeta values,' J. Algebra 580 (2021), 247-263;
preprint 2011.14338[NT].
- M. E. Hoffman and M. Kuba, `Logarithmic
integrals, zeta values, and tiered binomial coefficients,'
Monatsh. Math. 195 (2021), 119-154;
preprint 1906.08347[CO].
- F. C. S. Brown, `Depth-graded motivic multiple zeta
values,' Compos. Math. 157 (2021), 529-572;
preprint 1301.3053[NT].
- K. Fujita and Y. Komori, `A congruence
between symmetric multiple zeta-star values and multiple zeta-star values,'
Kyushu J. Math. 75 (2021), 149-167.
- C. Xu, `Explicit relations between multiple
zeta values and related variants,' Adv. in Appl. Math. 130 (2021),
art. 102245 (26 pp);
preprint 2012.02588[NT].
- Y. Komori, `Finite multiple zeta values,
symmetric multiple zeta values,and unified multiple zeta values,'
Tohoku Math. J. (2)73 (2021), 221-255.
- C. Xu, `Duality formulas for Arakawa-Kaneko
zeta values and related variants,' Bull. Malays. Math. Sci. Soc. 44
(2021), 3001-3018.
- B. Enriquez and H. Furusho, `The Betti side of the
double shuffle theory I. The harmonic coproducts,'
Selecta Math. (N.S.) 27 (2021), art. 79;
preprint 1803.10151[AG].
- K. Matsumoto and M. Nakasuji,
`Expressions of Schur multiple zeta-functions of anti-hook type by
zeta-functions of root systems,' Publ. Math. Debrecen 98 (2021),
345-377;
preprint 2002.01676[NT].
- K-W. Chen and M. Eie, `Gamma functions and
sum formulas for multiple zeta values,' J. Ramanujan Math. Soc. 36
(2021), 93-107.
- S. Charlton, `The alternating block decomposition
of iterated integrals, and cyclic insertion on multiple zeta values,'
Quarterly J. Math. 72 (2021), 975-1028;
preprint 1703.03784[NT].
- T. Wakhare and C. Vignat, `Structural properties
of multiple zeta values,' Int. J. Number Theory 17 (2021),
1873-1897;
preprint 1809.07492[NT].
- K. Onodera, `On multiple Hurwitz zeta function
of Mordell-Tornheim type,' Int. J. Number Theory 17 (2021),
2327-2360.
- M. Hirose, H. Murahara, and M. Ono,
`On variants of symmetric multiple zeta-star values and the cyclic
sum formula,' Ramanujan J. 56 (2021), 467-489;
preprint 2001.03832[NT].
- H. Bachmann, Y. Takeyama, and K. Tasaka,
`Finite and symmetric Mordell-Tornheim multiple zeta values,'
J. Math. Soc. Japan 73 (2021), 1129-1158;
preprint 2001.10694[NT].
- M. Hirose, N. Sato, and S-I. Seki, `The connector
for the double Ohno relation,' Acta Arith. 201 (2021), 109-118.
- J. Quan, `Some results on q-multiple
harmonic sums,' Filomat 35:2 (2021), 667-677.
- D. Essouabri and K. Matsumoto, `Values of
multiple zeta-functions with polynomial denominators at non-positive
integers,' Internat. J. Math. 32 (2021), art. 2159938;
preprint 1908.09248[NT].
- N. Komiyama, `On shuffle-type functional
relations of desingularized multiple zeta functions,' J. Number Theory
231 (2022), 120-138;
preprint 2002.09486[NT].
- B. Saha, `Multiple Stieltjes constants
and Laurent type expansion of the multiple zeta functions at integer
points,' Selecta Math. (N. S.) 28 (2022), art. 6 (41 pp.);
preprint 1902.04389[NT].
- K. Tasaka, `Note on totally odd multiple zeta
values,' Math. J. Okayama Univ. 64 (2022), 63-73;
preprint.
- D. K. Sahoo and G. K. Viswanadham, `An identity
involving weighted and desingularized multiple zeta functions,'
Acta Arith. 202 (2022), 195-202.
- R. E. Haddad, `A generalization of multiple
zeta values. Part 1: Recurrent sums,' Notes Number Theory Discrete
Math. 28 (2022), 167-199.
- R. E. Haddad, `A generalization of multiple
zeta values. Part 2: Multiple sums,' Notes Number Theory Discrete
Math. 28 (2022), 200-233.
- A. Keilthy, `Motivic multiple zeta values
and the block filtration,' J. Number Theory 238 (2022), 883-919;
preprint 2006.03003[NT].
- M. Hirose, H. Murahara, and M. Ono,
`Ohno-type relation for interpolated multiple zeta values,'
J. Number Theory 328 (2022), 710-730;
preprint 2103.14851[NT]
- K. Matsumoto, T. Matsusaka, and I. Tanackov,
`On the behavior of multiple zeta-functions with identical arguments on
the real line,' J. Number Theory 239 (2022), 151-182;
preprint 2012.01720[NT].
- F. Chapoton, `Zinbiel algebras and multiple
zeta values,' Doc. Math. 27 (2022), 519-533;
preprint 2109.00241[NT].
- C. Lupu, `Another look at Zagier's formula
for multiple zeta values involving Hoffman elements,' Math. Z. 301
(2022), 3127-3140;
preprint 2011.11718[NT].
- M. Nakasuji and W. Takeda, `The Pieri formula
for hook type Schur multiple zeta functions,' J. Combin. Theory Ser. A
191 (2022), no. 105642 (31 pp);
preprint 2105.12418[NT]
- Z-h. Li, `Algebraic relations of interpolated
multiple zeta values,' J. Number Theory 240 (2022), 439-470;
preprint 1904.09887[NT].
- J. Okuda and K. Ueno, `New approach to Ohno
relations for multiple zeta values,'
preprint NT/0106148.
- S. Kitani, E. Sawada, and K. Ueno, `Finite automata
and relations of multiple zeta values,'
preprint NT/0403458.
- S. A. Zlobin, `A certain integral over a triangle,'
preprint NT/0511239.
- S. A. Zlobin, `A note on arithmetic properties of
multiple zeta values,'
preprint NT/0501151.
- O. Mathieu, `On a symmetric space attached to
polyzeta values,'
preprint 0810.0396[NT].
- K. Imatomi, T. Tanaka, K. Tasaka, and N. Wakabayashi,
`On some combinations of multiple zeta-star values,'
preprint 0912.1951[NT].
- J. Kuipers and J. A. M. Vermaseren, `About a
conjectured basis for multiple zeta values,'
preprint 1105.1884[math-ph].
- M. Igarashi, `On generalizations of the sum formula
for multiple zeta values,'
preprint 1110.4875[NT].
- J. Merker, `Multizeta calculus I,'
preprint 1208.5643[NT].
- T. Machide, `A parameterized generalization of
the sum formula for quadruple zeta values,'
preprint 1210.8005[NT].
- T. Terasoma, `Brown-Zagier relation for associators,'
preprint 1301.7474[NT].
- T. Tanaka, `Restricted sum formula and
derivation relation for multiple zeta values,'
preprint 1303.0398[NT].
- H. Bachmann and U. Kühn, `A short
note on a conjecture of Okounkov about a q-analogue of
multiple zeta functions,'
preprint 1407.6796[NT].
- J. Alm, Formal weights in Kontsevich's
formality construction and multiple zeta values,'
preprint 1410.8377[QA].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - II-1: Standard algebraic relations of prime weighted multiple
harmonic sums and adjoint multiple zeta values,'
preprint 1412.5099[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - I-2: Indirect solution of the equation of horizontality
of Frobenius,'
preprint 1501.04893[NT].
- A. Chatzistamatiou, `On the integrality of
p-adic iterated integrals,'
preprint 1501.05760[NT].
- H. Furusho, `On relations among multiple zeta
values obtained in knot theory,'
preprint 1501.06638[QA].
- T. Machide, `Use of the generating function to
generalize the sum formula for quadruple zeta values,'
preprint 1503.01194[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - I-1: Direct solution of the equation of horizontality of
Frobenius,'
preprint 1503.08756[NT].
- W. Zudilin, `On a family of polynomials related
to ζ(2,1)=ζ(3),'
preprint 1504.07696[NT].
- M. Dotzel and I. Horozov, `Shuffle product
for multiple Dedekind zeta values over imaginary quadratic fields,'
preprint 1509.08400[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - II-2: From algebraic relations of multiple harmonic sums
to those of cyclotomic p-adic multiple zeta values,'
preprint 1601.01158[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - II-3: Sequences of multiple harmonic sums viewed as periods,'
preprint 1601.01159[NT].
- A. Vieru, `Analytic renormalization of multiple
zeta values. Geometry and combinatorics of generalized Euler reflection
formula for MZV,'
preprint 1601.04703[NT].
- S. Stieberger, `Periods and superstring amplitudes,'
preprint 1605.03630[hep-th].
- S. Yamamoto, `Multiple zeta values of
Kaneko-Tsumura type and their values at positive integers,'
preprint 1607.01978[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - I-3: The number of iterations of Frobenius viewed as a
variable,'
preprint 1610.09107[NT].
- S. Yamamoto, `A note on Kawashima functions,'
preprint 1702.01377[NT].
- K-W. Chen, `Multinomial sum formulas of multiple
zeta values,'
preprint 1704.05636[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - III-2: Around the nonvanishing of multiple harmonic sums,'
preprint 1707.01924[NT].
- J. I. Burgos Gil and J. Fresán,
Multiple Zeta Values: From Numbers to Motives, to appear.
- C. Dietze, C. Manai, C. Nöbel, and
F. Wagner, `Totally odd depth-graded multiple zeta values and period
polynomials,'
preprint 1708.07210[NT].
- D. Jarossay, `An explicit theory of
π1un,crys(P1-{0,μN,
∞}) - V-1: The Frobenius extended to
π1un,DR(P1-{0,μpαN,∞}),'
preprint 1708.08009[NT].
- F. C. S. Brown, `Anatomy of an associator,'
preprint 1709.02765[QA].
- D. Jarossay, p-Adic multiple zeta values
at roots of unity and p-adic pro-unipotent actions - IV-1:
p-adic multiple zeta values at roots of unity extended to sequences
of integers with any sign,'
preprint 1712.09976[NT].
- M. Hirose, K. Imatomi, H. Murahara, and S. Saito,
`Ohno-type relations for classical and finite multiple zeta-star values,'
preprint 1806.09299[NT].
- Kh. Hessami Pilehrood and T. Hessami Pilehrood,
Multiple zeta-star values on 3-2-1 indices,'
preprint 1806.10510[NT].
- H. Murahara, `An algebraic proof of the weighted
sum formula for finite and symmetric multiple zeta(-star) values,'
preprint 1808.01430[NT].
- B. Enriquez and H. Furusho, `The Betti side of the
double shuffle theory II. Double shuffle relations for associators,'
preprint 1807.07786[AG].
- H. Hirose, H. Murahara, and T. Onozuka, `Sum formula
for multiple zeta function,'
preprint 1808.01559[NT].
- Y. Komori, K. Matsumoto, and H. Tsumura,
`An overview and supplements to the theory of functional relations for
zeta-functions of root systems,'
preprint 1809.01815[NT].
- X. Ai, Generalized multiple zeta values over
number fields I,'
preprint 1809.07370[NT].
- Y. Horikawa, H. Murahara, and K. Oyama,
`A note on derivation relations for multiple zeta values and finite
multiple zeta values,'
preprint 1809.08389[NT].
- K-W. Chen and M. Eie, `Some special Euler
sums and ζ☆(r+2,{2}n),'
preprint 1810.11795[NT].
- N. Glazunov, `(p-Adic) L-functions
and (p-adic) (multiple) zeta values,'
preprint 1901.01957[NT].
- B. Sadaoui, `Special values of generalized
multiple Hurwitz zeta functions at non-positive integers,'
preprint 1902.06763[NT].
- M. Hirose, H. Murahara, and S. Saito,
`Generating functions for Ohno-type sums of finite and symmetric
multiple zeta-star values,'
preprint 1905.04875[NT].
- M. Maassarani, `Bigraded Lie algebras related
to MZVs,'
preprint 1907.07200[NT].
- B. Enriquez and H. Furusho, `The Betti side of the
double shuffle theory III. Bitorsor structures,'
preprint 1908.00444[AG].
- M. DeFranco, `On the multiple zeta values
ζ({2}k),'
preprint 1911.07129[NT].
- T. Hoshi, `On values of zeta functions of
Arakawa-Kaneko type,'
preprint 2003.04634[NT].
- H. Murahara and T. Onozuka, `Cyclic relation
for multiple zeta function,'
preprint 2003.08068[NT].
- J. Li, `Iterated integrals, multiple zeta
values, and Selberg integrals,'
preprint 2007.00172[NT].
- H. Murahara and T. Tanaka, `Algebraic aspects
of rooted tree maps,'
preprint 2009.05238[NT].
- A. Saad, `Multiple zeta values and iterated
Eisenstein integrals,'
preprint 2009.09885[NT].
- M. Hirose, H. Murahara, and S. Saito,
`Generating functions for sums of polynomial multiple zeta values,'
preprint 2011.04220[NT].
- N. Markarian, `On algebra of big zeta values,'
preprint 2011.04944[NT].
- H. Murahara, `A note on Ohno sums for multiple
zeta values,'
preprint 2102.12177[NT].
- M. Ono, K. Sakurada, and S-I. Seki,
`A note on ℱn-multiple zeta values,'
preprint 2103.03470[NT]
- N. Komiyama, `Relationship between renormalized
values of shuffle type and of harmonic type of multiple zeta functions,'
preprint 2104.00153[NT]
- M. Hirose, H. Murahara, and S. Saito, `Ohno
relation for regularized multiple zeta values,'
preprint 2105.09631[NT]
- M. Ono, `t-Adic symmetrization map
on harmonic algebra,'
preprint 2106.03682[NT]
- H. Bachmann, `q-Analogues of multiple
zeta values and the formal double Eisestein space,'
preprint 2108.08634[NT].
- F. Chapoton, `Multiple T-values with
one parameter,'
preprint 2108.08534[NT].
- C. Dupont, `Valeurs zêta multiples,'
preprint 2109.01699[NT].
- M. Nakasuji and Y. Ohno, `Duality formula
and its generalization for Schur multiple zeta functions,'
preprint 2109.14362[NT].
- K. W. Chen and M. Eie, `On the convolutions
of sums of multiple zeta(-star) values of of height one,'
preprint 2110.00231[NT].
- N. Komiyama, `On properties of adari(pal)
and ganit(pic),'
preprint 2110.04834[QA].
- B. Brindle, `A unified approach to qMZVs,'
preprint 2111.00051[NT].
- B. Brindle, `Proving dualities for qMZVs
with connected sums,'
preprint 2111.00058[NT].
- M. Kobayashi, `From Basel problem to multiple
zeta values,'
preprint 2112.03361[NT].
- S. Chavan, M. Kobayashi, and J. Layja,
`Integral evaluation of odd Euler sums, multiple t-value
t(3,2,...,2), and multiple zeta value ζ(3,2,...,2),'
preprint 2111.07097[NT].
- J. Li, `A continuous version of multiple zeta
functions,'
preprint 2111.15062[NT].
- P. Li, `The complex genera, symmetric functions,
and multiple zeta values,'
preprint 2112.01192[DG].
- J. A. Arciniega-Nevárez, M. Berghoff,
and E. R. Dolores-Cuenca, `Virtual posets, shuffle algebras, and
associators,'
preprint 2112.06228[QA].
- M. Nakasuji and W. Takeda,
`Shuffle product formula of the Schur multiple zeta values of hook type,'
preprint 2201.01402[NT].
- L. Lai, C. Lupu, and D. Orr, `Elementary
proofs of Zagier's formula for multiple zeta values and its odd variant,'
preprint 2201.09262[NT].
- K-W. Chen and M. Eie, `On three general forms
of multiple zeta(-star) values,'
preprint 2202.03839[NT].
- A. Keilthy, `A generalization of quasi-shuffle
algebras and an application to multiple zeta values,'
preprint 2202.04739[NT].
- M. Hirose, H. Murakawa, and S. Saito,
`t-Adic multiple zeta values for indices in which 1 and 3 appear
alternately,'
preprint 2203.07701[NT].
- H. Bachmann and J. van Ittersum, `Partitions,
multiple zeta values, and the q-bracket,'
preprint 2203.09165[NT].
- K-W. Chen and M. Eie, `Weighted sum formulas
from shuffle products of multiple zeta-star values,'
preprint 2203.14030[NT].
- H. Bachmann and A. Burmester, `Combinatorial
multiple Eisenstein series,'
preprint 2203.17074[NT].
- M. Nakasuji, Y. Ohno, and W. Takeda,
`An interpolation of the generalized duality formula for the Schur
multiple zeta values to complex functions,'
preprint 2204.04839[NT].
- T. Machide, `Computations about formal
multiple zeta spaces defined by binary extended double shuffle relations,'
preprint 2205.13751[NT].
- M. Igarashi, `Note on cyclic sum of certain
parametrized multiple series,'
preprint 2206.01190[NT].
- M. Hirose and N. Sato, `Block shuffle identities
for multiple zeta values,'
preprint 2206.03458[NT].
- A. Kimura, `Intersection of duality and
derivation relations for multiple zeta values,'
preprint 2208.08556[NT].
D. MULTIPLE ZETA VALUES OVER FUNCTION FIELDS
- D. S. Thakur, Function Field Arithmetic,
World Scientific, Singapore, 2004.
- R. Masri, `Multiple zeta values over global
function fields,' in Multiple Dirichlet Series, Automorphic Forms,
and Analytic Number Theory (Bretton Woods, 2005), S. Friedberg
et. al. (eds.),
Proc. Symp. Pure Math. 75, Amer. Math. Soc., Providence, RI, 2006,
pp. 157-175.
- G. W. Anderson and D. S. Thakur, `Multizeta
values for Fq[t], their period
interpretation, and relations between them,' Int. Math. Res. Notices
2009, 2038-2055;
preprint 0902.1180[NT].
- D. S. Thakur, `Relations between multizeta values
for Fq[t]', Int. Math. Res. Notices 2009,
2318-2346.
- D. S. Thakur, `Power sums with applications to
multizeta and zeta zero distribution for
Fq[t]',
Finite Fields Appl. 15 (2009), 534-552.
- J. A. Lara Rodríguez, `Some conjectures and
results about multizeta values over Fq[t]',
J. Number Theory 130 (2010), 1013-1023.
- D. S. Thakur, `Shuffle relations for function field
multiple zeta values,' Int. Math. Res. Notices 2010, 1973-1980.
- J. A. Lara Rodríguez, `Relations between
multizeta values in characteristic p,' J. Number Theory 131
(2011), 2081-2099.
- J. A. Lara Rodríguez, `Special relations
between multizeta values and parity results,' J. Ramanujan Math. Soc.
27 (2012), 275-293;
preprint 1108.4726[NT].
- Chieh-Yu Chang, `Linear independence of monomials of
multizeta values in positive characteristic,' Compos. Math. 150 (2014),
1789-1808;
preprint 1207.2326[NT].
- J. A. Lara Rodríguez and D. S. Thakur,
Zeta-like multizeta values for Fq[t],'
Indian J. Pure Appl. Math. 45 (2014), 787-801;
preprint 1312.4928[NT].
- Chieh-Yu Chang, `On characteristic p
multizeta values,' in Algebraic Number Theory and Related Topics 2012,
A. Shiho et. al. (eds.),
RIMS Kōkyūroku Bessatsu B51 (2014), pp. 177-202.
- D. S. Thakur, `Arithmetic of gamma, zeta and
multizeta
values for function fields,' in Arithmetic Geometry over Function Fields
, F. Bars et. al. (eds.), Birkhäuser, Basel, 2014,
pp. 197-279.
- H-J. Chen, `On shuffle of double zeta values over
Fq[t],' J. Number Theory 148 (2015),
153-163.
- Y. Mishiba, `Algebraic independence of the
Carlitz period and the positive characteristic multizeta values at n
and (n,n),' Proc. Amer. Math. Soc. 143 (2015), 3753-3763;
preprint 1307.3725[NT].
- J. A. Lara Rodríguez and D. S. Thakur,
`Multizeta shuffle relations for function fields with non rational infinite
place,' Finite Fields Appl. 37 (2016), 344-356.
- Y-L. Kuan and Y-H. Lin, `Criterion for deciding
zeta-like multizeta values in positive characteristic,' Experiment. Math.
25 (2016), 246-256.
- F. Pellarin, `A note on multiple zeta values
in Tate algebras,' Riv. Mat. Univ. Parma 7 (2016), 71-100;
preprint 1601.07348[NT].
- Chieh-Yu Chang, `Linear relations among double
zeta values in positive characteristic,' Cambridge J. Math. 4
(2016), 289-331;
preprint 1510.06519[NT].
- Y. Mishiba, `On algebraic independence of
certain multizeta values in characteristic p,' J. Number Theory
173 (2017), 512-528;
preprint 1401.3628[NT].
- D. S. Thakur, `Multizeta values for function
fields: a survey,' J. Théor. Nombres Bordeaux 29 (2017),
997-1023.
- F. Pellarin, `A sum-shuffle formula for zeta
values in Tate algebras,' J. Théor. Nombres Bordeaux 29 (2017),
1025-1048;
preprint 1609.08873[NT].
- Chieh-Yu Chang and Y. Mishiba, `On finite
Carlitz multiple polylogarithms,' J. Théor. Nombres Bordeaux 29
(2017), 1049-1058;
preprint 1611.02822[NT].
- H-J. Chen, `Anderson-Thakur polynomials and
multizeta values in positive characteristic,' Asian J. Math. 21
(2017), 1135-1152;
preprint 1506.06463[NT].
- H-J. Chen and Y-L. Kuan, `On depth 2 zeta-like
families,' J. Number Theory 184 (2018), 411-427.
- G. Todd, `A conjectural characterization
of Fq[t]-linear relations between
multizeta values,' J. Number Theory 187 (2018), 264-287.
- R. Harada, `On Lara Rodriguez' full
conjecture for double zeta values in function fields,' Int. J. Number
Theory 14 (2018), 1081-1092;
preprint 1701.04552[NT].
- Chieh-Yu Chang, M. A. Papanikolas, and J. Yu,
`An effective criterion for Eulerian multizeta values in positive
characteristic,' J. Eur. Math. Soc. 21 (2019), 405-440;
preprint 1411.0124[NT].
- Chieh-Yu Chang and Y. Mishiba, `On multiple
polylogarithms in characteristic p: v-adic vanishing versus
∞-adic Eulerianness,' Int. Math. Res. Notices 2019, 923-947;
preprint 1511.03490[NT].
- D. Basak, N. Degré-Pelletier, and M. N.
Lalín, `Multiple zeta functions and polylogarithms over global
function fields,' J. Théor. Nombres Bordeaux 32 (2020),
403-439.
- O. Gezmiş, `Deformation of multiple
zeta values and their logarithmic interpretation in positive characteristic,'
Doc. Math. 25 (2020), 2355-2412;
preprint 1910.02805[NT].
- D. S. Thakur, `Multizeta in function field
arithmetic,' in t-Motives: Hodge Structures, Transcendence
and Other Motivic Aspects, G. Böckle et. al. (eds.),
EMS Ser. Congr. Rep. 16, EMS Publishing House, Berlin, 2020, pp. 441-452.
- Chieh-Yu Chang and Y. Mishiba, `On a conjecture of
Furusho over function fields,' Invent. Math. 223 (2021), 49-102;
preprint 1710.10849[NT].
- T. Ngo Dac, `On Zagier-Hoffman's conjectures in
positive characteristic,' Ann. of Math. (2) 194 (2021), 361-392.
- R. Harada, `Alternating multizeta values in
positive characteristic,' Math. Z. 298 (2021), 1263-1291;
preprint 1909.03849[NT].
- R. Harada and Y-T. Chen, `On lower bounds
of the dimensions of multizeta values in positive characteristic,'
Doc. Math. 26 (2021), 537-559.
- Chieh-Yu Chang, N. Green, and Y. Mishiba,
`Taylor coefficients of Anderson-Thakur series and explicit formulae,'
Math. Ann. 379 (2021), 1425-1474;
preprint 1902.06879[NT].
- F. Pellarin and R. Perkins, `On twisted
A-harmonic sums and Carlitz finite zeta values,'
J. Number Theory 232 (2022), 355-378.
- W-C. Huang, `A t-motivic interpretation
of shuffle relations for multizeta values,' J. Number Theory 232
(2022), 379-405;
preprint 1904.02248[NT].
- Q. Shen, `Zero distribution of v-adic
multiple zeta values over Fq(t),'
Int. J. Number Theory 18 (2022), 131-139;
preprint 1912.10365[NT].
- S. Shi, `Vanishing of multiple zeta values
over Fq[t] at negative integers,'
Canad. Math. Bull 65 (2022), 9-29;
preprint 2003.12242[NT].
- H. H. Le and T. Ngo Dac, `Zeta-like multiple zeta values
in positive characteristic,' Math. Z. 301 (2022), 2037-2057.
- K. Joshi, `The t-motivic mixed Carlitz
zeta category and Carlitz-Thakur multi-zeta values,'
preprint 1306.2506[NT].
- Y-T. Chen, `Integrality of v-adic
multiple zeta values,'
preprint 2001.01855[NT].
- J. A. Lara Rodríguez and D. S. Thakur,
`Zeta-like multizeta values for higher genus curves,'
preprint 2003.12910[NT].
- Chieh-Yu Chang, Y-T. Chen, and Y. Mishiba,
`Algebra structure of multiple zeta values in positive characteristic,'
preprint 2007.08264[NT].
- N. Green and T. Ngo Dac, `On log-algebraic
identities for Anderson t-modules and characteristic p
multiple zeta values,'
preprint 2007.11060[NT].
- O. Gezmiş and F. Pellarin, `Trivial
multiple zeta values in Tate algebras,'
preprint 2008.07144[NT].
- K. Chung, T. Ngo Dac, and F. Pellarin,
`Universal families of Eulerian multiple zeta values in positive
characteristics,'
preprint 2111.06973[NT].
- D. Matsuzuki, `On ∞-adic and v-adic
multiple zeta functions in positive characteristic,'
preprint 2201.12953[NT].
- B-H. Im, H. Kim, K. N. Le, T. Ngo Dac, and
L. H. Pham, `Zagier-Hoffman's conjectures in positive characteristic,'
preprint 2205.07165[NT].
- Chieh-Yu Chang, Y-T. Chen, and Y. Mishiba,
`On Thakur's basis conjecture for multiple zeta values in positive
characteristic,'
preprint 2205.09929[NT].
- J. A. Lara Rodríguez, `Two term relations
between multizeta of depth two for Fq[t],'
preprint 2208.06277[NT].
E. ALTERNATING SERIES
- D. H. Bailey, J. M. Borwein, and R. Girgensohn,
`Experimental evaluation of Euler sums,'
Experiment. Math. 3 (1994), 17-30.
- D. Borwein, J. M. Borwein, and R. Girgensohn,
`Explicit evaluation of Euler sums,' Proc. Edinburgh Math. Soc. 38
(1995), 277-294.
- V. Adamchik, `On Stirling numbers and Euler sums,'
J. Comp. Appl. Math. 79 (1997), 119-130.
- D. J. Broadhurst, J. M. Borwein, and
D. M. Bradley, `Evaluation of k-fold
Euler/Zagier sums: a compendium of results for arbitrary k,'
Electronic J. Combinatorics 4(2) (1997), R5.
- Wenchang Chu, `Hypergeometric series and the
Riemann zeta function,' Acta Arithmetica 82 (1997), 103-118.
- P. Flajolet and B. Salvy, `Euler sums and contour
integral representations,'
Experiment. Math. 7 (1998), 15-35.
- M. Bigotte, G. Jacob, N. E. Oussous, and
M. Petitot, `Lyndon words and shuffle algebras for generating the coloured
multiple zeta values relations tables,' Theoret. Comput. Sci. 273
(2002), 271-283.
- D. Borwein, J. M. Borwein, and D. M. Bradley,
`Parametric Euler sum identities,' J. Math. Anal. Appl. 316 (2006),
328-338.
- J. M. Borwein and D. M. Bradley, `Thirty-two
Goldbach variations,' Intl. J. Number Theory 2 (2006), 65-103;
preprint NT/0502034.
- M. N. Lalín, `On a certain combination of
colored multizeta values,' J. Ramanujan Math. Soc. 20 (2006),
115-127;
preprint NT/0603442.
- J-Y. Enjalbert and V. Hoang Ngoc Minh, `Analytic
and combinatoric aspects of Hurwitz polyzêtas', J. Théor.
Nombres Bordeaux 19 (2007), 595-640.
- D-Y. Zheng, `Further summation formulae related
to generalized harmonic numbers,' J. Math. Anal. Appl. 335 (2007),
692-706.
- R-O. Vîlceanu, `The multiple zeta function
and the computation of some integrals in compact form,' An. Univ. Craiova
Ser. Mat. Inform. 35 (2008), 182-198.
- J. Choi and H. M. Srivastava,
`Some applications of the Gamma and polygamma functions involving
convolutions of the Rayleigh functions, multiple Euler sums and
log-sine integrals,' Math. Nachr. 282 (2009), 1709-1723.
- J. Blümlein, D. J. Broadhurst, and J. A. M.
Vermaseren, `The multiple zeta value data mine,' Comput. Phys. Commun.
181 (2010), 582-625;
preprint 0907.2557[math-ph].
- J. Zhao, `On a conjecture of Borwein, Bradley and
Broadhurst,' J. reine angew. Math. 639 (2010), 223-233; cf.
preprint 0705.2267[NT].
- J. Zhao, `Alternating Euler sums and special
values of Witten multiple zeta function attached to so(5),'
J. Aust. Math. Soc. 89 (2010), 419-430;
preprint 0903.0473[NT].
- Z. Shen and T. Cai, `Some identities for
alternating multiple zeta values' (Chinese), Acta Math. Sinica (Chin. Ser.)
56 (2013), 441-450.
- D. H. Bailey, D. Borwein, and J. M. Borwein,
`On Eulerian log-gamma integrals and Tornheim-Witten zeta functions,'
Ramanujan J. 36 (2015), 43-68.
- J. Zhao, `Restricted sum formula of alternating
Euler sums,' Ramanujan J. 36 (2015), 375-401;
preprint 1207.5366[NT].
- C. Xu, Y. Yang, and J. Zhang, `Explicit evaluation
of quadratic Euler sums,' Int. J. Number Theory 13 (2017),
655-672;
preprint 1609.04923[NT].
- C. Xu, `Identities for the multiple zeta (star)
values,' Results Math. 73 (2018), no. 3;
preprint 1702.03868[NT].
- C. Xu, `Explicit evaluation of harmonic sums,'
Commun. Korean Math. Soc. 33 (2018), 13-36;
preprint 1612.00388[NT].
- L-P. Teo, `Alternating double Euler sums,
hypegeometric identities and a theorem of Zagier,' J. Math. Anal. Appl.
462 (2018), 777-800;
preprint 1709.01269[CV].
- C. Xu, Some evaluation of cubic Euler sums,
J. Math. Anal. Appl. 466 (2018), 789-805;
preprint 1705.06088[NT].
- A. Berglund and J. Bergström, `Hirzebruch
L-polynomials and multiple zeta values,' Math. Ann. 372 (2018),
125-137;
preprint 1708.05547[AT].
- D. Orr, `Generalized log-sine integrals and
Bell polynomials,' J. Comput. Appl. Math. 347 (2019), 330-342;
preprint 1705.04723[NT].
- C. Xu, `Integrals of logarithmic functions and
alternating multiple zeta values,' Math. Slovaca 69 (2019), 339-356;
preprint 1701.00385[NT].
- M. E. Hoffman, `An odd variant of multiple zeta values,'
Commun. Number Theory Phys. 13 (2019), 529-567;
preprint 1612.05232[NT].
- C. Xu and W. Wang, `Explicit formulas of Euler
sums via multiple zeta values,' J. Symbolic Comput. 101 (2020),
109-127;
preprint 1805.08056[NT].
- Z-h. Li and C. Xu, `Weighted sum formulas
of multiple t-values with even arguments,' Forum Math. 32
(2020), 965-967.
preprint 1908.03200[NT]
- C. Xu, `Some results on multiple polyogarithm
functions and alternating multiple zeta values,' J. Number Theory
214 (2020), 177-201.
- J. Quan, `Alternating double t-values and
T-values,' Adv. Difference Equ. 2020:450 (13 pp).
- M. E. Hoffman, M. Kuba, M. Levy, and G. Louchard,
`An asymptotic series for an integral,' Ramanujan J. 53 (2020),
1-25;
preprint 1802.09214[NT].
- I. Mező, `Log-sine-polylog integrals and
alternating Euler sums,' Acta Math. Hungar. 160 (2020), 45-57.
- C. Xu, `Explicit formulas of some mixed Euler
sums via alternating multiple zeta values,' Bull. Malays. Math. Sci. Soc.
43 (2020), 3809-3827.
- Z. Jin and J. Li, `Motivic multiple zeta values
relative to µ2', Algebra Number Theory 14 (2020),
2685-2712;
preprint 1805.02126[NT].
- M. Kaneko and H. Tsumura, `On multiple zeta values
of level two,' Tsukuba J. Math. 44 (2020), 213-234;
preprint 1903.03747[NT].
- W. Wang and C. Xu, `Alternating multiple zeta
values, and explicit formulas of some Euler-Apéry-type series,'
European J. Combin. 93 (2021), art. 103283 (22 pp);
preprint 1909.02943[NT].
- Y. He and Z. Chen, `Some weighted sum
formulas for multiple zeta, Hurwitz zeta, and alternating multiple
zeta values,' J. Math.
2021, art. 6672532 (16 pp).
- Z. Shen and H. He, `Some identities for
multiple alternating zeta values,' J. Number Theory 228 (2021),
8-21.
- C. Xu, `Explicit evaluations for several
variants of Euler sums,' Rocky Mountain J. Math. 51 (2021),
1089-1106.
- C. Xu, `Duality of weighted sum formulas
of alternating multiple T-values,' Bull. Korean Math. Soc.
58 (2021), 1261-1278;
preprint 2006.02967[NT]
- M. Genčev, `A weighted sum formula
for alternating zeta-star values,' Mediterr. J. Math. 18 (2021),
art. 236 (15 pp).
- J. Quan, `Explicit formulas of alternating
multiple zeta star values
ζ★(1,
{1}m-1,1)
and ζ★(2,{1}m-1,
1),'
AIMS Mathematics 7(1);
288-293.
- Y. Takeyama, `On a weighted sum of multiple
T-values of fixed weight and depth,' Bull Aust. Math. Soc. 104
(2021), 398-405;
preprint 2012.11063[NT]
- C. Xu, `Extensions of Euler-type sums and
Ramanujan-type sums,'
Kyushu J. Math. 75 (2021), 295-322.
- T. Murakami, `On Hoffman's t-values
of maximal height and generators of multiple zeta values,' Math. Ann.
382 (2022), 421-458.
- C. Xu and J. Zhao, `Variants of multiple
zeta values with even and odd summation indices,' Math. Z. 300
(2022), 3109-3142;
preprint 2008.13157[NT]
- D. J. Broadhurst, `On the enumeration of
irreducible k-fold Euler sums and their roles in knot theory and
field theory,'
preprint hep-th9604128.
- D. J. Broadhurst, `Conjectured enumeration of
irreducible multiple zeta values, from knots and Feynman diagrams,'
preprint hep-th9612012.
- Z-h. Li, `On harmonic sums and alternating Euler
sums,' preprint 1012.5192[NT].
- G. Louchard, `Two applications of polylog functions
and Euler sums,'
preprint 1709.08686[CO].
- C. Xu and W. Wang, `Two variants of Euler sums,'
preprint 1906.07654[NT].
- C. Xu and J. Zhao, `Explicit relations
between Kaneko-Yamamoto type multiple zeta values and related variants,'
preprint 2008.13163[NT]
- W. Wang and C. Xu, `Dirichlet type extensions of
Euler sums,'
preprint 2009.11704[NT]
- S. Berger, A. Chandra, J. Jain, D. Xu, C. Xu,
and J. Zhao, `Proof of Kaneko-Tsumura Conjecture on Triple T-values,'
preprint 2011.02393[NT]
- W. Wang and C. Xu, `On variants of the Euler sums
and symmetric extensions of the Kaneko-Tsumura conjecture,'
preprint 2108.13204[NT]
- C. Xu and J. Zhao, `Apéry-type series and
colored multiple zeta values,'
preprint 2111.10998[NT]
- S. Charlton, `On motivic multiple t
values, Saha's basis conjecture, and generators of alternating MZVs,'
preprint 2112.14613[NT]
- C. Xu and J. Zhao,`Apéry-type series
with summation indicies of mixed parities and colored multiple zeta values I,'
preprint 2202.06195[NT]
- C. Xu and J. Zhao,`Apéry-type series
with summation indicies of mixed parities and colored multiple zeta values II,'
preprint 2203.00777[NT]
- C. Xu and L. Yan, `Parametric Euler T-sums of
odd harmonic numbers,'
preprint 2203.13996[NT]
- S. Charlton and M. E. Hoffman, `Symmetry results for
multiple t-values,'
preprint 2204.14183[NT]
- C. Xu and J. Zhao,`Apéry-type series
with summation indicies of mixed parities and colored multiple zeta values III,'preprint 2205.01000[NT]
F. MULTIPLE POLYLOGARITHMS/NESTED SUMS
- A. B. Goncharov, `Multiple polylogarithms, cyclotomy,
and modular complexes,' Math. Res. Lett. 5 (1998), 497-516.
- D. J. Broadhurst, `Massive 3-loop Feynman
diagrams reducible to SC* primitives of algebras of the sixth root of unity,'
European Phys. J. C (Fields) 8 (1999), 311-333;
preprint hep-th9803091.
- M. E. Hoffman, `Quasi-shuffle products,' J. Algebraic
Combin. 11 (2000), 49-68;
preprint QA/9907173.
- E. Remiddi and J. A. M. Vermaseren, `Harmonic
polylogarithms,' Int. J. Modern Phys. A 15 (2000), 725-754;
preprint hep-ph/9905237.
- A. B. Goncharov, `The dihedral Lie algebras and
Galois symmetries of π1(l)(
P1-({0,∞}∪μN)),'
Duke Math. J. 110 (2001), 397-487;
preprint AG/0009121.
- M. Yu. Kalmykov and O. Veretin, `Single scale diagrams
and multiple binomial sums,' Phys. Lett. B 483 (2000), 315-323;
preprint hep-th/0004010.
- A. I. Davydychev and M. Yu. Kalmykov,
`Some remarks on the ε-expansion of dimensionally regulated
Feynman diagrams,' Nuclear Phys. B (Proc. Suppl.) 89 (2000), 283-288;
preprint hep-th/0005287.
- V. Hoang Ngoc Minh, M. Petitot, J. Van Der Hoeven,
`Shuffle algebra and polylogarithms,' Discrete Math. 225 (2000),
217-230.
- A. I. Davydychev and M. Yu. Kalmykov,
`New results for the ε-expansion of certain one-, two- and three-loop
Feynman diagrams,' Nuclear Phys. B 605 (2001), 266-318;
preprint hep-th/0012189.
- J. M. Borwein, D. M. Bradley, D. J. Broadhurst,
and P. Lisoněk, `Special values of multidimensional polylogarithms,'
Trans. Amer. Math. Soc. 353 (2001), 907-941.
- J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer,
`Central binomial sums, multiple Clausen values, and zeta values,'
Experiment. Math. 10 (2001), 25-34.
- V. Hoang Ngoc Minh, G. Jacob, M. Petitot, and
N. E. Oussous, `De l'algèbre des ζ de Riemann multivariées
à l'algèbre des ζ de Hurwitz multivariées,'
Sém. Lothar. Combin. 44 (2001), art. B44i (21 pp).
- D. Bowman and D. M. Bradley, `Multiple polylogarithms:
a brief survey,' in Conference on q-Series with Applications to
Combinatorics, Number Theory, and Physics (Urbana, IL, 2000),
B. C. Berndt and K. Ono (eds.),
Contemp. Math. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 71-92.
- G. Racinet, `Torseurs associés à
certaines relations algébriques entre polyzêtas aux racines
de l'unité,'
C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 5-10.
- G. Racinet, `Algèbre de Lie de valeuers
formelles d'hyperlogarithmes aux racines de l'unité'
C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 11-16.
- S. Moch, P. Uwer, and S. Weinzierl, `Nested sums,
expansion of transcendental functions and multiscale multiloop integrals,'
J. Math. Phys. 43 (2002), 3363-3386;
preprint hep-ph0110083.
- A. B. Goncharov, `Multiple ζ-values,
Galois groups, and geometry of modular varieties,' in
European Congress of Mathematics (Barcelona, 2000), Vol. I,
Progr. Math. 201, Birkhäuser, Basel, 2001, pp. 361-392;
preprint AG/0005069.
- G. Racinet, `Doubles mélanges des
polylogarithmes multiples aux racines de l'unité,' Publ. Math. IHES
95 (2002), 185-231;
preprint QA/0202142;
English translation (courtesy of D. Moskovich).
- M. Waldschmidt, `Multiple polylogarithms: an
introduction,' in
Number Theory and Discrete Mathematics (Chandigarh, 2000),
A. K. Agarwal et. al. (eds.), Birkhäuser, Basel, 2002, pp. 1-12.
- S. Akiyama and H. Ishikawa, `On analytic
continuation of multiple L-functions and related zeta functions,'
in Analytic Number Theory, C. Jia and K. Matsumoto (eds.),
Developments in Math. 6, Kluwer, Dordrecht, 2002, pp. 1-16.
- M. N. Lalín, `Some examples of Mahler measure
as multiple polylogarithms,' J. Number Theory 103 (2003), 85-108.
- E. A. Ulanskii, `Identities for generalized
polylogarithms' (Russian),
Mat. Zametki 73 (2003), 613-624; English translation in Math.
Notes 73 (2003), 571-581.
- M. Kaneko and T. Arakawa, `On multiple L-values,'
J. Math. Soc. Japan 56 (2004), 967-991.
- V. Hoang Ngoc Minh, `Shuffle algebra and differential
Galois group of colored polylogarithms,' Nuclear Phys. B (Proc. Suppl.)
135 (2004), 220-224.
- J. Okuda, `Duality formulas of the special values
of multiple polylogarithms,' Bull. London Math. Soc. 37 (2005), 230-242;
preprint CA/0307137.
- J. Vollinga and S. Weinzierl, `Numerical evaluation
of multiple polylogarithms,' Comput. Phys. Commun. 167 (2005), 177-194;
preprint hep-ph/0410259.
- K. Matsumoto and H. Tsumura, `Generalized multiple
Dirichlet series and generalized multiple polylogarithms,' Acta Arithmetica
124 (2006), 139-158.
- Q. Wang, `Moduli spaces and multiple polylogarithm
motives,' Adv. in Math. 206 (2006), 329-357;
preprint AG/0610670.
- M. de Crisenoy, `Values at T-tuples of negative
integers of twisted multivariable zeta series associated to polynomials of
several variables,' Compos. Math. 142 (2006), 1373-1402.
- Yu. I. Manin, `Iterated integrals of modular forms
and noncommutative modular symbols,' in Algebraic Geometry and Number
Theory, V. Ginzburg (ed.),
Progress in Math. 256, Birkhäuser Boston, Boston, 2006, pp. 565-597;
preprint AG/0502576.
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`All order ε-expansion of Gauss hypergeometric functions with
integer and half-integer values of parameters,'
J. High Energy Phys. (2007), 02#040 (20 pp).
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`Multiple (inverse) binomial sums of arbitrary weight and depth and the
all-order ε-expansion of generalized hypergeometric functions
with one half-integer value of parameter,'
J. High Energy Phys. (2007), 10#048 (26 pp).
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`On the all-order ε-expansion of generalized hypergeometric
functions with integer values of parameters,'
J. High Energy Phys. (2007), 11#009 (12 pp).
- J. Zhao, `Analytic continuation of multiple
polylogarithms,' Analysis Math. 33 (2007), 301-323;
preprint AG/0302054.
- H. Tsumura, `On the parity conjecture for
multiple L-values of conductor four,' Tokyo J. Math. 30
(2007), 21-40.
- J. Sondow and S. A. Zlobin, `Integrals over
polytopes, multiple zeta values and polylogarithms, and Euler's constant'
(Russian), Mat. Zametki 84 (2008), 606-626; English translation in
Math. Notes 84 (2008), 568-583;
preprint 0705.0732[NT].
- J. Zhao, `Multiple polylogarithm values at
roots of unity,' C. R. Math. Acad. Sci. Paris Ser. I 346 (2008),
1029-1032; cf.
preprint 0810.1064[NT].
- M. de Crisenoy and D. Essouabri,
`Relations between values at T-tuples of negative integers of twisted
multivariable zeta series associated to polynomials of several variables,'
J. Math. Soc. Japan 60 (2008), 1-16.
- N. Kurokawa, M. N. Lalín and H. Ochiai,
`Higher Mahler measures and zeta functions,' Acta Arithmetica 135
(2008), 269-297;
preprint 0908.0171[NT].
- M. Yu. Kalmykov and B. A. Kniehl, `Towards
all-order Laurent expansion of generalized hypergeometric functions
around rational values of parameters,' Nuclear Phys. B 809 (2009),
365-405;
preprint 0807.0567[hep-th].
- K. Kimoto and Y. Yamasaki, `A variation
of multiple L-values arising from the spectral zeta function of the
non-commutative harmonic oscillator,'
Proc. Amer. Math. Soc. 137 (2009), 2503-2515.
- Y. Yamasaki, `Evaluations of multiple Dirichlet
L-values via symmetric functions,' J. Number Theory 129 (2009),
2369-2386;
preprint 0712.1639[NT].
- T. Mansour, `Identities for sums of a
q-analogue of polylogarithm functions,' Lett. Math. Phys. 87
(2009), 1-18.
- S. Weinzierl, `Feynman integrals and multiple
polylogarithms,' in Renormalization and Galois Theories,
A. Connes et. al. (eds.), European Math. Soc., Zürich, 2009,
pp. 245-270.
- S. Oi, `Gauss hypergeometric functions, multiple
polylogarithms, and multiple zeta values,' Publ. Res. Inst. Mat. Sci. 45
(2009), 981-1009; cf.
preprint 0810.1829[QA].
- J. Zhao, `Standard relations of
multiple polylogarithms at roots of unity,'
Documenta Math.
15 (2010), 1-34.
- A. Zaharescu and M. Zaki, `On the singularities
of multiple L-functions,' Cent. Eur. J. Math. 8 (2010), 289-298.
- Y. Komori, K. Matsumoto and H. Tsumura,
`On multiple Bernoulli polynomials and multiple L-functions of
root systems,' Proc. London Math. Soc. (3) 100 (2010), 303-347.
- J. Zhao, `Multi-polylogs at twelfth roots
of unity and special values of Witten multiple zeta function attached
to the exceptional Lie algebra g2,' J. Algebra Appl.
9 (2010), 327-337;
preprint 0904.0888[NT].
- M. Yu. Kalmykov and B. A. Kniehl, `"Sixth root
of unity" and Feynman diagrams: hypergeometric function approach point
of view,' Nuclear Phys. B (Proc. Suppl.) 205-206 (2010), 129-134;
preprint 1007.2373[math-ph].
- S. Oi and K. Ueno, `Iterated integrals and
relations of multiple polylogarithms,' in
Representation Theory and Combinatorics,
RIMS Kōkyūroku 1689 (2010), pp. 101-116.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Multiple Bernoulli polynomials and multiple zeta-functions of root systems,'
in Representation Theory and Combinatorics,
RIMS Kōkyūroku 1689 (2010), pp. 117-132.
- G. Yamashita, `Bounds for the dimensions of
p-adic multiple L-value spaces,' Doc. Math., special
volume for G. Suslin 60th birthday (2010), 687-723.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`A survey on the theory of multiple Bernoulli polynomials and multiple
L-functions of root systems,' in Infinite Analysis 2010
Developments in Quantum Integrable Systems, A. Kuniba et. al.
(eds.), RIMS Kōkyūroku Bessatsu B28 (2011), 99-120.
- D. Essouabri, K. Matsumoto, and H. Tsumura,
`Multiple zeta-functions associated with linear recurrence sequences
and the vectorial sum formula,' Canad. J. Math. 63 (2011),
241-276.
- G. Kawashima, T. Tanaka, and N. Wakabayashi,
`Cyclic sum formula for multiple L-values,' J. Algebra 348
(2011), 336-349.
- J. M. Borwein and A. Straub, `Special values of
generalized log-sine integrals,' ISAAC 2011-Proceedings of the 36th
International Symposium on Symbolic and Algebraic Computation (San
Jose, June 2011), A. Leykin (ed.), ACM, New York, 2011, pp. 43-50.
- J. Zhao and X. Zhou, `Reducibility of
signed cyclic sums of Mordell-Tornheim zeta and L-values,'
J. Ramanujan Math. Soc. 26 (2011), 383-414;
preprint 0902.1262[NT].
- B. Enriquez and H. Furusho, `Mixed pentagon, octagon
and Broadhurst duality equations,' J. Pure Appl. Algebra 216 (2012),
982-995.
- S. Zlobin, `Special values of generalized
polylogarithms' (Russian), Fundam. Prikl. Mat. 16 (2010), 63-89;
English translation in J. Math. Sci. 182 (2012), 484-504;
preprint 0712.1656[NT].
- S. Oi and K. Ueno, `KZ equation
on the moduli space M0,5 and the harmonic product of multiple
polylogarithms,' Proc. London Math. Soc. (3) 105 (2012), 983-1020;
preprint 0910.0718[QA].
- J. Enjalbert and V. Hoang Ngoc Minh, `Combinatorial
study of colored Hurwitz polyzêtas,' Discrete Math. 312 (2012),
3489-3498;
preprint 1206.1216[CO].
- H. Furusho, `Geometric interpretation of double
shuffle relation for multiple L-values,' in
Galois-Teichmüller Theory and Arithmetic Geometry, H. Nakamura
et. al. (eds.), Adv. Studies in Pure Math. 68, Math. Soc. Japan,
Tokyo, 2012, pp. 163-187.
- G. Yamashita, `p-Adic multiple
zeta values, p-adic multiple L-values, and motivic Galois
groups,' in
Galois-Teichmüller Theory and Arithmetic Geometry, H. Nakamura
et. al. (eds.), Adv. Studies in Pure Math. 68, Math. Soc. Japan,
Tokyo, 2012, pp. 629-658.
- M. Zakrzewski, `Asymptotic analysis and special
values of generalized multiple zeta values,' in Formal and analytic
solutions to differential equations (Będlewo, 2011), W. Balser
et. al. (eds.), Banach Center Publications 97, Polish Acad. Sci.,
Inst. of Mathematics, Warsaw, 2012, pp. 179-190.
- J. M. Borwein and A. Straub, `Log-sine evaluations
of Mahler measures,' J. Aust. Math. Soc. 92 (2012), 15-36.
- P. Borwein, J. M. Borwein, A. Straub, and J. Wan,
`Log-sine evaluations of Mahler measures II,'
Integers 12a
(2012), #A5, 1179-1212.
- C. Duhr, H. Gangl, and J. R. Rhodes, `From polygons
and symbols to polylogarithmic functions,'
J.
High Energy Phys. (2012) 10#75 (77 pp).
- L. Guo and B. Xie, `Explicit double shuffle
relations and a generalization of Euler's decomposition formula,'
J. Algebra 380 (2013), 46-77;
preprint 0808.2618[NT].
- C. Anzai and Y. Sumino, `Algorithms to evaluate
multiple sums for loop computations,' J. Math. Phys. 54 (2013),
art. 033514 (22pp);
preprint 1211.5204[hep-th].
- J. Ablinger and J. Blümlein, `Harmonic sums,
polylogarithms, special numbers, and their generalizations,' in
Computer Algebra in Quantum Field Theory, C. Schneider and
J. Blümlein (eds.), Springer, Vienna, 2013, pp. 1-32;
preprint 1304.7071[math-ph].
- J. Furuya, M. Minamide, and Y. Tanigawa,
`Moment integrals of 1/sin t and related zeta-values,'
Ramanujan J. 33 (2014), 423-445.
- I. Mező, `Nonlinear Euler sums,'
Pacific J. Math. 272 (2014), 201-226.
- S. Agarwala, `Dihedral symmetry of multiple
polylogarithms,' Commun. Number Theory Phys. 7 (2014), 57-124;
preprint 1112.1474[NT].
- I. Todorov, `Polylogarithms and multizeta
values in massless Feynman amplitudes,' in Lie Theory and its
Applications in Physics (Varna, 2013), V. Dobrev (ed.), Springer
Proc. in Math. and Stat. 111, Springer, New York, 2014, pp. 155-175.
- S. Yamamoto, `A sum formula of multiple
L-values,' Int. J. Number Theory 11 (2015), 127-137;
preprint 1101.3948[NT].
- M-A. Coppo and B. Candelpergher, `Inverse
binomial series and values of Arakawa-Kaneko zeta functions,'
J. Number Theory 150 (2015), 98-119.
- G. H. E. Duchamp, V. Hoang Ngoc Minh, and
Ngo Quoc Hoan, `Harmonic sums and polylogarithms at negative multi-indices,'
ACM Commun. Computer Algebra 49 (2015), 70-73.
- J. M. Borwein and A. Straub, `Relations for Nielsen
polylogarithms,' J. Approx. Theory 193 (2015), 74-88;
preprint.
- C. Bogner and M. Lüders, `Multiple polylogarithms
and linearly reducible Feynman graphs,' in
Feynman Amplitudes, Periods and Motives (Madrid, 2012), L.
Álvarez-Cónsul et. al. (eds.), Contemp. Math. 648,
Amer. Math. Soc., Providence, RI, 2015, pp. 11-28.
- C. Duhr, `Scattering amplitudes, Feynman integrals and
multiple polylogarithms,' in
Feynman Amplitudes, Periods and Motives (Madrid, 2012), L.
Álvarez-Cónsul et. al. (eds.), Contemp. Math. 648,
Amer. Math. Soc., Providence, RI, 2015, pp. 109-134.
- I. Soudères, `Cycle complex over P1
minus 3 points: toward multiple zeta value cycles,' J. Pure Appl.
Algebra 220 (2016), 2590-2647;
preprint 1210.4653[AG].
- D. H. Bailey and J. M. Borwein, `Computation and
structure of character polylogarithms with applications to character
Mordell-Tornheim-Witten sums,' Math. Comp. 85 (2016), 295-324.
- H. Frellesvig, D. Tommasini, and C. Wever,
`On the reduction of generalized polylogarithms to Lin
and Li2,2 and on the evaluation thereof,'
J. High Energy Phys. (2016) 03#189(35 pp).
- M. N. Lalín, `A new method for obtaining
polylogarithmic Mahler measure formulas,'
Res. Number Theory 2:17 (2016) (16 pp.)
- E. Panzer, `The parity theorem for multiple
polylogarithms,' J. Number Theory 172 (2017), 93-113;
preprint 1512.04482[NT].
- H. Furusho, Y. Komori, K. Matsumoto, and
H. Tsumura, `Fundamentals of p-adic multiple L-functions and
evaluation of their special values,' Selecta Math. (N. S.) 23 (2017),
39-100;
preprint 1508.07185[NT].
- J. M. Henn, A. V. Smirnov, and V. A. Smirnov,
`Evaluating multiple polylogarithm values at sixth roots of unity up to
weight six,'
J. Nuclear Phys. B 919 (2017), 315-324;
preprint 1512.08389[hep-th].
- M. E. Hoffman and K. Ihara, `Quasi-shuffle products
revisited,' J. Algebra 481 (2017), 293-326;
preprint 1610.05180[QA].
- G. H. E. Duchamp, V. Hoang Ngoc Minh, and Ngo Quoc
Hoan, `Harmonic sums and polylogarithms at non-positive multi-indices,'
J. Symbolic Comput. 83 (2017), 166-186;
preprint 1611.09683[CO].
- E. D'Hoker, M. B. Green, Ö. Güdoğan, and
P. Vahnove, `Modular graph functions,' Commun. Number Theory Phys. 11
(2017), 165-218;
preprint 1512.06779[hep-th].
- K. Ebrahimi-Fard, D. Manchon, and J. Singer,
`The Hopf algebra of (q)multiple polylogarithms with nonpositive
arguments,' Int. Math. Res. Notices 2017, 4882-4922;
preprint 1503.02977[NT].
- S. Gun and B. Saha, `Multiple Lerch zeta functions
and an Idea of Ramanujan,' Michigan Math. J. 67 (2018), 267-287.
- O. Schnetz, `Numbers and functions in quantum field
theory,' Phys. Rev. D 97 (2018), art. 085018 (20 pp).
- D. H. Bailey and J. M. Borwein, `Computation and
experimental evaluation of Mordell-Tornheim-Witten sum derivatives,'
Experiment. Math. 27 (2018), 370-376.
- M. N. Lalín and J-S. Lechausseur, `A reduction
formula for length-two polylogarithms and some applications,' Rev. Un. Math.
Argentina 59 (2018), 285-309.
- O. Schnetz, `The Galois coaction on the electron
anomalous magnetic moment,' Commun. Number Theory Phys. 12 (2018),
335-354;
preprint 1711.05118[hep-th].
- B. Saha, `Analytic properties of multiple
Dirichlet series associated to additive and Dirichlet characters,'
Manuscripta Math. 159 (2019), 203-227; cf.
preprint 1705.05341[NT].
- M. Ono, `New functional equations of finite
multiple polylogarithms,' Tohoku Math. J. (2)72 (2020), 149-157;
preprint 1706.09136[NT].
- J. Écalle, `The scrambling operators applied
to multizeta algebra and singular perturbation analysis,' in
Algebraic Combinatorics, Resurgence, Moulds and Applications, vol. 2,
F. Chapoton et. al (eds.), European Math. Soc. Publ. House, Berlin,
2020, pp. 133-325.
- M. E. Hoffman, `Quasi-shuffle algebras and applications,'
in Algebraic Combinatorics, Resurgence, Moulds and Applications, vol. 2,
F. Chapoton et. al (eds.), European Math. Soc. Publ. House, Berlin,
2020, pp. 327-348;
preprint 1805.12464[NT].
- S. Yamamoto, `Multivariable Hoffman-Ihara operators
and the operad of formal power series, J. Algebra 556 (2020), 634-648.
- K. Ebrahimi-Fard, W. S. Gray, and D. Manchon,
`Evaluating generating functions for periodic multiple polylogarithms
via rational Chen-Fliess series,' in Periods in Quantum Field Theory
and Arithmetic (ICMAT, Madrid, 2014), J. I. Burgos Gil et. al.
(eds.), Springer Proc. in Math. & Stat. 314, Springer, New York, 2020,
pp. 445-468;
preprint 1603.05948[NT].
- K. Tasaka, `Finite and symmetric colored
multiple zeta values and multiple harmonic q-series at roots of
unity,' Selecta Math. (N. S.) 27 (2021), art. 21 (34 pp.);
preprint 1907.01935[NT].
- M. Kato and Y. Takeyama, `A deformantion of
multiple L-values,' Ramanujan J. 57 (2022), 93-118.
- H. Kawamura, T. Maesaka, and S-I. Seki,
Multivariable connected sums and multiple polylogarithms,'
Res. Math. Sci. 9 (2022), art. 4 (25 pp.);
preprint 2103.05492[NT].
- H. Murahara and T. Onozuka,
`Connectors of the Ohno relations for parametrized multiple series,'
Rocky Mountain J. Math. 52 (2022), 687-694.
- T. Tanaka, and N. Wakabayashi, `Rooted tree maps
for multiple L-values, J. Number Theory 240 (2022),
471-489.
- K.-G. Schlesinger, `Some remarks on q-deformed
multiple polylogarithms,'
preprint QA/0111022.
- W. Zudilin, `One parameter models of Hopf
algebras associated with multiple zeta values,'
preprint.
- S. Oi, `Representaion of the Gauss hypergeometric
function by multiple polylogarithms and relations of multiple zeta values,'
preprint NT/0405162.
- N. Dan, `Sur la conjecture de Zagier pour n=4,'
preprint 0809.3984[KT].
- N. Dan, `Sur la conjecture de Zagier pour n=4 II,'
preprint 1101.1557[KT].
- S. Oi and K. Ueno, `Connection problem of
Knizhnik-Zamolodchikov equation on moduli space M0,5,'
preprint 1109.0715[QA].
- C. Duhr, `Mathematical aspects of scattering amplitudes,'
preprint 1411.7538[hep-ph].
- C. Glanois, `Unramified Euler sums and Hoffman ★
basis,'
preprint 1603.05178[NT].
- H. Gangl, `Multiple polylogarithms in weight 4,'
preprint 1609.05557[NT].
- S. Charlton, `A review of Dan's reduction method
for multiple polylogarithms,'
preprint 1703.03961[NT].
- C. Xu, `Evaluations of multiple polylogarithm
functions, multiple zeta values and related zeta values,'
preprint 1908.03065[NT].
- S. Kadota, `On the parity result for multiple
Dirichlet series,'
preprint 1909.06062[NT].
- R. Umezawa, `Evaluation of iterated log-sine
integrals in terms of multiple polylogarithms,'
preprint 1912.07201[NT].
- K. C. Au, `Evaluation of one-dimensional
polylogarithmic integral, with applications to infinite series,'
preprint 2007.03957[NT]
- S. Yamamoto, `Duality of one-variable
multiple polylogarithms and their q-analogues,'
preprint 2010.05505[NT].
- Z-h. Li and Z. Wang, `Weighted sum formulas
of multiple L-values and its applications,'
preprint 2102.07184[NT].
- C. Xu and Z. Zhao, `Explicit relations of
some variants of convoluted multiple zeta values,'
preprint 2103.01377[NT].
- K. C. Au, `Iterated integrals and special
values of multiple polylogarithms at algebraic arguments,'
preprint 2201.01676[NT].
- M. Kaneko and H. Tsumura, `Multiple
L-values of level four, poly-Euler numbers, and related zeta
functions,'
preprint 2208.05146[NT].
G. ELLIPTIC MULTIPLE ZETA VALUES
- J. Brödel, C. R. Mafra, N. Matthes, and
O. Schlotterer, `Elliptic multiple zeta values and one-loop superstring
amplitudes,'
J. High Energy Phys. (2015) 07#112 (41 pp).
- J. Brödel, N. Matthes, and O. Schlotterer,
`Relations between elliptic multiple zeta values and a special derivation
algebra,' J. Phys. A: Math. Theor. 49 (2016), 155203 (49 pp.);
preprint 1507.02254[hep-th].
- B. Enriquez, `Analogues elliptiques des nombres
multizétas,' Bull. Math. Soc. France 144 (2016), 395-427.
- N. Matthes, `Elliptic double zeta values,' J. Number
Theory 171 (2017), 227-251;
preprint 1509.08760[NT].
- S. Hohenegger and S. Stieberger, `Monodromy
relations in higher-loop string amplitudes,' Nuclear Phys. B 925
(2017), 63-134;
preprint 1702.04963[NT].
- N. Matthes, `Decomposition of elliptic multiple
zeta values and iterated Eisenstein integrals,' in Various Aspects
of Multiple Zeta Value, H. Furusho (ed.), RIMS Kōkyūroku
2015 (2017), pp. 170-183;
preprint 1703.09597[NT].
- J. Brödel, N. Matthes, G. Richter, and
O. Schlotterer, `Twisted elliptic multiple zeta values and non-planar
one-loop open string amplitudes,' J. Phys. A: Math. Theor. 51
(2018), 285401 (49 pp.);
preprint 1704.03449[hep-th].
- J. Brödel, O. Schlotterer, and F. Zerbini,
From elliptic multiple zeta values to modular graph functions: open and
closed strings at one loop,'
J. High Energy
Phys. (2019) 01#155 (67pp).
- J. Brödel, C. Duhr, F. Dulat, B. Penante,
and L. Tancredi, `From modular forms to differential equations for Feynman
diagrams,' in Elliptic Integrals, Elliptic Functions and Modular Forms
in Quantum Field Theory, J. Blümlein, C. Schneider and P. Paule
(eds.), Springer, New York, 2019, pp, 107-131;
preprint 1807.00842[hep-th].
- J. Brödel and O. Schlotterer, `One-loop
string scattering amplitudes as iterated Eisenstein integrals,'
in Elliptic Integrals, Elliptic Functions and Modular Forms
in Quantum Field Theory, J. Blümlein, C. Schneider and P. Paule
(eds.), Springer, New York, 2019, pp, 133-159.
- L. Schneps, `Elliptic double shuffle,
Grothendieck-Teichmüller and mould theory,' Ann. Math. Qué 44
(2020), 261-289;
preprint 1506.09050[NT].
- N. Matthes, `Overview on elliptic multiple zeta
values,' in Periods in Quantum Field Theory and Arithmetic (ICMAT,
Madrid, 2014), J. I. Burgos Gil et. al. (eds.), Springer
Proc. in Math. & Stat. 314, Springer, New York, 2020, pp. 105-132.
- P. Lochak, N. Matthes, and L. Schneps, `Elliptic
multiple zeta values and the elliptic double shuffle relations,'
Int. Math. Res. Notices 2021, 695-753;
preprint 1703.09410[NT].
H. FINITE MULTIPLE HARMONIC SUMS
- J. Blümlein and S. Kurth, `Harmonic sums
and Mellin transforms up to two-loop order,'
Phys. Rev. D 60 (1999), art. 01418 (31 pp);
preprint hep-ph9810241.
- J. A. M. Vermaseren, `Harmonic sums, Mellin transforms
and integrals,' Int. J. Modern Phys. A 14 (1999), 2037-2076;
preprint hep-ph9806280.
- S. Moch and J. A. M. Vermaseren, `Deep inelastic
structure functions at two loops,' Nuclear Phys. B 573 (2000), 853-907;
preprint hep-ph9912355.
- J. Blümlein, `Analytic continuation of Mellin
transforms up to two-loop order,' Comput. Phys. Commun. 133 (2000),
76-104;
preprint hep-ph0003100.
- J. Blümlein, `Algebraic relations between
harmonic sums and associated quantities,' Comput. Phys. Commun. 159
(2004), 19-54;
preprint hep-ph0311046.
- M. E. Hoffman, `The Hopf algebra structure of
multiple harmonic sums,' Nuclear Phys. B (Proc. Suppl.) 135 (2004),
214-219;
preprint QA/0406589.
- A. I. Davydychev and M. Yu. Kalmykov, `Massive
Feynman diagrams and inverse binomial sums,' Nuclear Phys. B 699
(2004), 3-64;
preprint hep-th/0303162.
- J. Blümlein and S. Moch, `Analytic
continuation of the harmonic sums for the 3-loop anomalous dimensions,'
Phys. Lett. B 614 (2005), 53-61;
preprint hep-ph/0503188.
- C-G. Ji, `A simple proof of a curious congruence
by Zhao,' Proc. Amer. Math. Soc. 133 (2005), 3469-3472.
- D. M. Bradley, `Duality for finite multiple
harmonic q-series', Disc. Math. 300 (2005), 44-56.
- C. Costermans, J-Y. Enjalbert and V. Hoang Ngoc Minh,
`Algorithmic and combinatoric aspects of multiple harmonic sums,'
in 2005 International Conference on Analysis of Algorithms, C.
Martínez (ed.),
DMTCS Conference Vol. AD (2005), pp. 59-70.
- C. Costermans, J-Y. Enjalbert, V. Hoang Ngoc Minh
and M. Petitot, `Structure and asymptotic expansion of multiple harmonic sums,'
in International Symposium on Symbolic and Algebraic Computation
(Beijing, 2005), M. Kauers (ed.), ACM Press, New York, 2005,
pp. 100-107.
- C. Costermans and V. Hoang Ngoc Minh, `Some results
à l'Abel obtained by use of techniques à la Hopf,' in
Global Integrability of Field Theories (Daresbury, UK, 2006),
J. Calmet et. al. (eds.), Universitätsverlag Karlsruhe, 2006,
pp. 63-83.
- C. Sekine, `Partial sums of multiple zeta value
series,'
Tokyo J. Math. 29 (2006), 465-474.
- J. Zhao, `Bernoulli numbers, Wolstenholme's
theorem, and p5 variations of Lucas' theorem,'
J. Number Theory 123 (2007), 18-26.
- X. Fu, X. Zhou, and T. Cai, `Congruences for finite
triple harmonic sums,' J. Zhejiang Univ. Science A 8 (2007), 946-948.
- X. Zhou and T. Cai, `A generalization of a curious
congruence on harmonic sums,'
Proc. Amer. Math. Soc. 135 (2007), 1329-1333.
- J. Zhao, `Wolstenholme type theorem for
multiple harmonic sums,' Int. J. Number Theory 4 (2008), 73-106;
preprint NT/0301252.
- M. Kuba, H. Prodinger, and C. Schneider,
`Generalized reciprocity laws for sums of harmonic numbers,'
Integers 8(1)
(2008), #A17 (20 pp).
- S. Albino, `Analytic continuation of harmonic
sums,' Phys. Lett. B 674 (2009), 41-48.
- C. Costermans and V. Hoang Ngoc Minh,
Noncommutative algebra, multiple harmonic sums and applications in
discrete probability, J. Symbolic Comput. 44 (2009), 801-817.
- J. Blümlein, `Structural relations of
harmonic sums and Mellin transforms up to weight w = 5,' Comput. Phys.
Commun. 180 (2009), 2218-2249;
preprint 0901.3106[hep-ph].
- G. Kawashima, `A generalization of the duality
for multiple harmonic sums,' J. Number Theory 130 (2010), 347-359;
preprint 0802.1228[NT].
- M. Kuba and H. Prodinger,`On a reciprocity
law for finite multiple zeta values,'
Int. J. Combinatorics 2010, art. 153621 (13 pp).
- M. Kuba and H. Prodinger, `A note on Stirling series,'
Integers 10
(2010), #A34, 393-406.
- R. Tauraso, `Congruences involving alternating
multiple harmonic sums,'
Electronic J. Combinatorics 17(1) (2010), R16 (11 pp).
- M. Kuba, `On functions of Arakawa and Kaneko
and multiple zeta functions,'
Appl. Anal. Discrete Math. 4 (2010), 45-53.
- R. Tauraso, `New harmonic number identities
with applications,'
Sém. Lothar. Combin. 63 (2010), art. B63g (8 pp).
- G. Kawashima, `A generalization of the duality
for finite multiple harmonic q-series,' Ramanujan J. 21 (2010),
335-347;
preprint 0905.0244[NT].
- R. Tauraso and J. Zhao, `Congruences of alternating
multiple harmonic sums,' J. Comb. Number Theory 2 (2010), 129-159;
preprint 0909.0670[NT].
- B. Xia and T. Cai, `Bernoulli numbers and
congruences for harmonic sums,' Int. J. Number Theory 6 (2010),
849-855.
- J. Blümlein, `Structural relations of
harmonic sums and Mellin transforms at weight w = 6,' in
Motives, Quantum Field Theory and Pseudodifferential Operators
(Boston, 2008), A. Carey et. al. (eds.),
Clay Math. Proc. 12, Amer. Math. Soc., Providence, RI, 2010, pp. 167-187;
preprint 0901.0837[math-ph].
- J. Ablinger, J. Blümlein and C. Schneider,
`Harmonic sums and polylogarithms generated by cyclotomic polynomials,'
J. Math. Phys. 52 (2011), art. 102301 (52 pp);
preprint 1105.6063[math-ph].
- J. Zhao, `Mod p structure of alternating
and non-alternating multiple harmonic sums,'
J. Théor. Nombres Bordeaux 23 (2011), 299-308.
- Kh. Hessami Pilehrood and T. Hessami Pilehrood,
`Congruences arising from Apéry-type series for zeta values,'
Adv. Appl. Math. 49 (2012), 218-238;
preprint 1108.1893[NT].
- J. Zhao, `Finiteness of p-divisible sets
of multiple harmonic sums,' Ann. Sci. Math. Québec 36 (2012),
419-443;
preprint NT/0303043.
- J. Zhao, `On q-analog of Wolstenholme
type congruences for multiple harmonic sums,'
Integers 13 (2013)
, #A23 (11 pp).
- Z. Shen and T. Cai, `Congruences for alternating
triple harmonic series' (Chinese), Acta Math. Sinica (Chin. Ser.) 55
(2012), 737-748.
- A. Ablinger, J. Blümlein, and C. Schneider,
`Analytic and algebraic aspects of generalized harmonic sums and
polylogarithms,' J. Math. Phys. 54 (2013), art. 082301 (73 pp);
preprint 1302.0378[math-ph].
- J. Rosen, `Multiple harmonic sums and Wolstenholme's
theorem,' Int. J. Number Theory 9 (2013), 2033-2052;
preprint 1302.0073[NT].
- K. Imatomi, M. Kaneko, and E. Takeda,
`Multi-poly-Bernoulli numbers and finite multiple zeta values,'
J. Integer Sequences 17 (2014), art. 14.4.5 (12 pp).
- Kh. Hessami Pilehrood, T. Hessami Pilehrood,
and R. Tauraso, `New properties of multiple harmonic sums modulo p
and p-analogues of Leshchiner's series,'
Trans. Amer. Math. Soc. 366 (2014), 3131-3159;
preprint 1206.0407[NT].
- L. Wang and T. Cai, `A curious congruence modulo
prime powers,' J. Number Theory 144 (2014), 15-24.
- J. Ablinger, J. Blümlein, C. G. Raab, and
C. Schneider, `Iterated binomial sums and their associated iterated
integrals,' J. Math. Phys. 55 (2014), art. 112301 (57 pp);
preprint 1407.1822[math-ph].
- J. Ablinger, J. Blümlein, and C. Scheider,
`Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms
and special numbers, J. Phys. Conf. Ser. 523 (2014), art. 012060 (10 pp);
preprint 1310.5645[math-ph].
- K. Imatomi, `Multi-poly-Bernoulli-star numbers
and finite multiple zeta-star values,'
Integers 14 (2014), #A51 (10 pp).
- E. Linebarger and J. Zhao, `A family of
multiple harmonic sum and multiple zeta star value identities,'
Mathematika 61 (2015), 63-71;
preprint 1304.3927[NT].
- J. Rosen, `Asymptotic relations for truncated
multiple zeta values,' J. London Math. Soc. (2) 91 (2015), 554-572;
preprint 1309.0908[NT].
- L. Wang, `A new curious congruence involving
multiple harmonic sums,' J. Number Theory 154 (2015), 16-31.
- S. Saito and N. Wakabayashi, `Sum formula for
finite multiple zeta values,' J. Math. Soc. Japan 67 (2015), 1069-1076;
preprint 1305.6529[NT].
- M. E. Hoffman, `Quasi-symmetric functions and
mod p multiple harmonic sums,'
Kyushu J. Math. 69 (2015), 345-366.
- K. Kamano, `Finite Mordell-Tornheim multiple
zeta values,' Funct. Approx. Comment. Math. 54 (2015), 65-72.
- S. Saito and N. Wakabayashi, `Bowman-Bradley
type theorem for finite multiple zeta values,' Tohoku Math. J. (2)
68 (2016), 241-251;
preprint 1304.2608[NT].
- J. Zhao, `Identity families of multiple harmonic
sums and multiple zeta (star) families,' J. Math. Soc. Japan 68
(2016), 1669-1694;
preprint 1303.2227[NT].
- K. Sakugawa and S-I. Seki, `On functional equations
of finite multiple polylogarithms,' J. Algebra 469 (2017), 323-357;
preprint 1509.07653[NT].
- M. McCoy, K. Thielen, L. Wang, and J. Zhao,
`A family of super congruences involving multiple harmonic sums,'
Int. J. Number Theory 13 (2017), 109-128.
- M. Ono and S. Yamamoto, `Shuffle product of finite
multiple polylogarithms,' Manuscripta Math. 152 (2017), 153-166;
preprint 1502.06693[NT].
- K. Sakugawa and S-I. Seki, `Finite and étale
polylogarithms,' J. Number Theory 176 (2017), 279-301;
preprint 1603.05811[NT].
- T. Cai, Z. Shen and L. Jia, `A congruence
involving harmonic sums modulo pαqβ,'
Int. J. Number Theory 13 (2017), 1083-1094;
preprint 1503.02798[NT].
- K. Chen and J. Zhao, `Supercongruences involving
multiple harmonic sums and Bernoulli numbers,'
J. Integer Sequences 20 (2017), art. 17.6.8 (22 pp).
- Kh. Hessami Pilehrood, T. Hessami Pilehrood,
and T. Tauraso, `Multiple harmonic sums and multiple harmonic star sums
are (nearly) never integers,'
Integers 17
(2017), #A10 (12 pp).
- P. Yang and T. Cai, `Super congruences on
harmonic sums,' Int. J. Number Theory 13 (2017), 2569-2582.
- J. Zhao, `Some congruences related to
finite multiple zeta values,' Anal. Geom. Number Theory 2 (2017),
59-75;
preprint 1404.3549[NT].
- G. Yamashita, `A small remark on finite
multiple zeta values and p-adic multiple zeta values,' in
Various Aspects of Multiple Zeta Values (Kyoto, 2013), K. Ihara (ed.),
RIMS Kōkyūroku Bessatsu B68, 2017, pp. 171-174.
- S. Saito, `Numerical tables for finite multiple
zeta values,' in
Various Aspects of Multiple Zeta Values (Kyoto, 2013), K. Ihara (ed.),
RIMS Kōkyūroku Bessatsu B68, 2017, pp. 191-208.
- K. Kamano, `Weighted sum formulas for finite
multiple zeta values,' J. Number Theory 192 (2018), 168-180.
- K. Chen, R. Hong, J. Qu, David Wang, and
J. Zhao, `Some families of super congruences involving multiple
harmonic sums,' Acta Arithmetica 185 (2018), 201-210;
preprint 1702.08599[NT].
- K. Oyama, `Ohno-type relation for finite multiple zeta
values,'
Kyushu J. Math. 72 (2018), 277-285.
- Y. Komori, `Finite multiple zeta values,
multiple zeta functions and multiple Bernoulli polynomials,'
Kyushu J. Math. 72 (2018), 333-342.
- T. Cai and Z. Shen, `Congruences involving
alternating harmonic sums modulo pαqβ,'
Math. Slovaca 68 (2018), 975-980;
preprint 1503.03154[NT].
- Y. Wang and J. Yang, `Modulo p2
congruences involving harmonic numbers,' Ann. Polon. Math. 121 (2018), 263-278.
- S-I. Seki, `The p-adic duality for the finite
star-multiple polylogarithms,' Tohoku Math. J. (2) 71 (2019), 111-122;
preprint 1605.06739[NT].
- A. Prygarin, `Reflection identities of harmonic
sums of weight four,'
Universe 5(3)
(2019), art. 77 (24 pp).
- Z-h. Li and E. Pan, `Sum of interpolated finite
multiple harmonic q-series,' J. Number Theory 201 (2019),
148-175;
preprint 1811.09199[NT].
- H. Hirose, M. Murahara, and S. Saito, `Weighted
sum formulas for multiple harmonic sums modulo primes,' Proc. Amer. Math.
Soc. 147 (2019), 3357-3366;
preprint 1808.00844[NT].
- M. Kaneko, K. Oyama, and S. Saito, `Analogues
of the Aoki-Ohno and Le-Murakami relations for finite multiple zeta
values,' Bull. Aust. Math. Soc. 100 (2019), 34-40;
preprint 1810.04813[NT].
- L. Jiu and D. Y. Shi, `Matrix representation for
multiplicative nested sums,' Colloq. Math. 158 (2019), 183-194;
preprint 1611.02425[CO].
- J. Rosen, `The completed finite period map and Galois
theory of supercongruences,' Int. Math. Res. Notices 2019, 7379-7405;
preprint 1703.04248[NT].
- M. Joubat and A. Prygarin, `The analytic
structure of the BFKL equation and reflection identities of harmonic
sums at weight five,' Internat. J. Modern Phys. A 34 (2019),
art. no. 1950064 (122 pp).
- S-I. Seki and S. Yamamoto, `Ohno-type identities
for multiple harmonic sums,' J. Math. Soc. Japan 72 (2020), 673-686;
preprint 1806.04785[NT].
- H. Murahara, T. Onozuka, and S-I. Seki,
`Bowman-Bradley type theorem for finite multiple zeta values in
𝒜2,' Osaka J. Math. 57 (2020), 647-653;
preprint 1810.10803[NT].
- H. Bachmann, Y. Takeyama, K. Tasaka,
`Special values of finite multiple harmonic q-series at
roots of unity,' in
Algebraic Combinatorics, Resurgence, Moulds and Applications, vol. 2,
F. Chapoton et. al (eds.), European Math. Soc. Publ. House, Berlin,
2020, pp. 1-18;
preprint 1807.00411[NT].
- N. Kawasaki and K. Oyama, `Cyclic sums of finite
multiple zeta values,' Acta Arithmetica 195 (2020), 281-288.
- H. Murahara and T. Onozuka, `Derivation relation for
finite multiple zeta values in 𝒜̂,' J. Aust. Math. Soc. 110
(2021), 260-265;
preprint 1809.02752[NT].
- L. Wang, `New congruences on multiple harmonic sums
and Bernoulli numbers', Publ. Math. Debrecen 97 (2020), 161-180;
preprint 1504.03227[NT].
- Y. Wang and J. Yang, `Modulo p2
congruences involving generalized harmonic numbers,' Bull. Malays. Math. Soc.
Sci. 44 (2021), 1799-1812.
- H. Murahara and M. Ono, `Yamamoto's interpolation
of finite multiple zeta and zeta-star values,' Tokyo J. Math. 44
(2021), 285-312;
preprint 1908.09307[NT].
- M. Kuba, `On multisets, interpolated multiple
zeta values and limit laws,'
Electron. J. Combin. 29(1) art. p1.48 (30 pp.).
- G. Kawashima, `Multiple series expressions
for the Newton series which interpolate finite multiple harmonic sums,'
preprint 0905.0243[NT].
- T. Cai and Z. Shen, `Super congruences involving
alternating harmonic sums modulo prime powers,'
preprint 1503.03156[NT].
- J. Zhao, `Finite multiple zeta values and finite
Euler sums,'
preprint 1507.04917[NT].
- J. Rosen, `The MHS algebra and supercongruences,'
preprint 1608.06864[NT].
- A. Prygarin, `Reflection identities of harmonic
sums up to weight three,'
preprint 1808.09307[hep-th].
- Y. Takeyama and K. Tasaka, `Supercongruences
of multiple harmonic q-sums and generalized finite/symmetric multiple
zeta values,'
preprint 2012.07067[NT].
- Kh. Hessami Pilehrood, T. Hessami Pilehrood,
and R. Tauraso, `On 3-2-1 values of finite multiple harmonic q-series
at roots of unity,'
preprint 2101.03576[NT].
- D. Matsuzuki,`Alternating variants of
of multiple poly-Bernoulli numbers and finite multiple zeta values in
characteristic 0 and p,'
preprint 2103.13118[NT].
- M. Kaneko, T. Murakami, and A. Yoshihara,
`On finite multiple zeta values of level two,'
preprint 2109.12501[NT].
- S. Chen, `On a congruence involving harmonic
series and Bernoulli numbers,'
preprint 2110.09629[NT].
- T. Anzawa, `Weighted sum formulas for finite
alternating multiple zeta values with some parameters,'
preprint 2201.02027[NT].
- Z-h. Li and Z. Wang, `Integrality and some
evaluations of odd multiple harmonic sums,'
preprint 2204.01347[NT].
 |
 |
 |
 |
home |
research |
MZV page |
index |