SOME HOPF ALGEBRAS
OF
PHYSICAL INTEREST

MICHAEL HOFFMAN
U.S. NAVAL ACADEMY

www.usna.edu/Users/math/meh/
GRADED CONNECTED HOPF ALGEBRAS

\[A = \bigoplus_{n \geq 0} A_n \]

GRADED ALGEBRA OVER FIELD \(k \) (char. 0); \(A_0 = k1. \)

COPRODUCT \(\Delta: A \to A \otimes A \) RESPECTS GRADING, IS ALGEBRA MAP, AND HAS
\[
\Delta(x) = x \otimes 1 + \sum x' \otimes x'' + 1 \otimes x, \quad 1x'1x'' > 0
\]

\(x \) IS PRIMITIVE IF \(\Delta(x) = 1 \otimes x + x \otimes 1 \)

EXISTENCE OF ANTIPODE \(S: A \to A \)

IS AUTOMATIC; HAVE \(S(1) = 1 \) AND
\[
S(x) = -\sum S(x')x'' - x
\]

FOR \(1x1 > 0 \). IF \(A \) IS COMMUTATIVE OR COCOMMUTATIVE, \(S^2 = 1d. \) IN GENERAL \(S \) IS ALGEBRA ANTI-AUTOMORPHISM.
DUALS

The graded dual of A is also a Hopf algebra, with product
\[\langle m^*(uv), w \rangle = \langle uv, \Delta(w) \rangle \]
and co-product
\[\langle \Delta^*(u), w_1 \otimes w_2 \rangle = \langle u, w_1 w_2 \rangle \]

A is self-dual ($A^* \cong A$) if it admits an inner product \langle , \rangle with
\[\langle uv, w \rangle = \langle uv, \Delta(w) \rangle. \]

Here is a table of Hopf algebras we will discuss:

<table>
<thead>
<tr>
<th></th>
<th>Commutative?</th>
<th>Co-commut.?</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sym</td>
<td>Yes</td>
<td>Yes</td>
<td>Sym</td>
</tr>
<tr>
<td>QSym</td>
<td>Yes</td>
<td>NO</td>
<td>NSym</td>
</tr>
<tr>
<td>T</td>
<td>NO</td>
<td>Yes</td>
<td>H_k</td>
</tr>
<tr>
<td>$\beta \simeq H_F$</td>
<td>NO</td>
<td>NO</td>
<td>H_F</td>
</tr>
</tbody>
</table>
Sym AND QSym

Let $B \subset k[[x_1, x_2, \ldots]]$ be the formal power series of bounded degree. (B graded by $|x_i| = 1 \forall i$.)

A series $p \in B$ is in Sym if the coefficient of $x_{i_1} x_{i_2} \cdots x_{i_k}$ agrees with that of $x_{j_1} x_{j_2} \cdots x_{j_k}$ for any two sets i_1, \ldots, i_k and j_1, \ldots, j_k of distinct subscripts.

A series $p \in B$ is in $QSym$ if the coefficient of $x_{i_1} x_{i_2} \cdots x_{i_k}$ agrees with that of $x_{j_1} x_{j_2} \cdots x_{j_k}$ for $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$.

The former condition is more restrictive, so $\text{Sym} \subset Q\text{Sym}$.
Sym as Hopf Algebra

Sym has the basis

\[m_\lambda = \sum x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \cdots x_{i_k}^{\lambda_k} \] (monomial s.f.'s)

where \(\lambda = \lambda_1 \lambda_2 \lambda_3 \cdots \) is any integer partition

As an algebra,

\[\text{Sym} = k[e_1, e_2, \cdots] \]

where \(e_i \) is the elementary s.f.

\[e_i = \frac{m_i^{\lambda_1} \cdots m_i^{\lambda_k}}{\lambda_1! \cdots \lambda_k!} \]

so we also have the basis

\[e_\lambda = e_1^{\lambda_1} e_2^{\lambda_2} \cdots e_k^{\lambda_k} \]

We can make Sym a Hopf algebra by making the \(e_i \) divided powers:

\[\Delta(e_\lambda) = \sum_{i=0}^{\infty} e_i \otimes e_{\lambda-i} \]

In general

\[\Delta(m_\lambda) = \sum_{\nu \vdash \lambda} m_\nu \otimes m_\beta \]
IN FACT, \(\text{Sym} \) IS SELF-DUAL SINCE

THERE IS AN INNER PRODUCT \((\cdot, \cdot)\) WITH \((e_x, mp) = \Delta_p\); THEN

\((e_x \otimes e_p, \Delta(mp)) = (e_x \otimes e_p, mp)\).

THE ANTIFOR 5: \(\text{Sym} \to \text{Sym} \) IS

THE AUTOMORPHISM OF \(\text{Sym} \) THAT

INTERCHANGES \(e_n \) WITH \((-1)^n h_n \), WHERE

\(h_n \) ARE THE COMPLETE S.F.'S

\[h_n = \sum_{i=1}^{n} m_a \]

\[1 \leq i = n \]
A basis for \(\text{QSym} \) is given by the monomial quasi-symmetric functions

\[
M_i = \sum_{j_1 < \cdots < j_k} x_{i_1}^{j_1} x_{i_2}^{j_2} \cdots x_{i_k}^{j_k}
\]

indexed by integer compositions (ordered partitions). So, e.g.,
\[
M_{i_2} + M_{i_1} = M_{i_2}, \quad M_{i_1} = M_{i_1}
\]

As an algebra,

\[
\text{QSym} = k \left[M_i \right] \text{ Lyndon}
\]

where \(I \) runs over "Lyndon words" in \(1,2,3,\ldots \).

The Hopf algebra structure is given by

\[
\Delta(M_i) = \sum M_{i_1, \otimes} M_{i_2}
\]

where the sum is over strings \(I_1, I_2 \) with \(I_1 I_2 = I \) (concatenation).
This is non-cocommutative.

A formula for the antipode S can be proved by induction:

$$S(M_I) = (-1)^{\ell(I)} \sum_{J \preceq I} M_J$$

where $\ell(I)$ = length of I

\preceq is refinement order

I = reverse of I ($T_2 = 2$)

The dual of $Q\text{Sym}$ is a noncommutative, cocommutative Hopf algebra called $N\text{Sym}$ (noncommutative symmetric functions). They were discussed by Gel'fand et al. as an algebra,

$N\text{Sym} = \mathbb{K}\langle e_1, e_2, \ldots \rangle$

with coproduct

$$\Delta(e_i) = \sum_{j=0}^i e_j \otimes e_{i-j}$$
HOLF ALGEBRA I OF ROOTED TREES

TREES 0, 1, ▲, 1, ▲, 2, ...
(DON'T DISTINGUISH BETWEEN ▲ AND ▲)

FORESTS 0, 1, ▲, 1, ...
(DOCE IMMATERIAL)

B+: FORESTS → TREES B+(0,1) = ▲

GRADE TREES BY NUMBER OF NON-ROOT
VERTICES: |▲| = 3

GROSSMAN-LARSON PRODUCT x ⊗ x':
LET x = B+(x₁,...,xₖ). THEN x ⊗ x'
IS THE SUM OF THE (1x₁+1) k
TREES OBTAINED BY ATTACHING THE
k BRANCHES OF x IN ALL POSSIBLE
LOCATIONS AMONG THE 1x₁+1 VERTICES
OF x'
\[1 \otimes 1 = \Lambda + 1 \]
\[\Lambda \otimes 1 = \Lambda + \Lambda + \Lambda + \ldots \]
\[1 \otimes \Lambda = \Lambda + \Lambda + \Lambda + \ldots \]

So \otimes is non-commutative.

(The one-vortex tree Λ is the identity; the product is associative.)

If \mathcal{I} is given the coproduct

\[\Delta(\mathcal{B}^{+(x_1 \ldots x_k)}) = \sum \mathcal{B}^{+(x_i)} \otimes \mathcal{B}^{+(x_j)} \]
\[\text{if } i \cup j = \{1, \ldots, k\} \]

then \mathcal{I} is a Hopf algebra, described by Grossman and Larson.
Our basic objects are now forests; multiplication is by concatenation. The identity is the empty forest \emptyset.

For a tree \mathcal{T}, a cut is the removal of some edges. A cut is admissible if no path from root to a vertex has more than one edge cut. So for $\mathcal{T} = ___$

\[x \times \times \times \times \]

are admissible cuts. $PC(\mathcal{T})$ is the forest parted from \mathcal{T} by the cut C; $RC(\mathcal{T})$ is what's left.

The coproduct in \mathcal{H}_k is

\[\Delta(\mathcal{T}) = x \otimes \emptyset + \sum_{\text{admissible } \mathcal{C}} PC(\mathcal{T}) \otimes RC(\mathcal{T}) \]

and extends to forests multiplicatively.
The antipodes is given on trees by

\[S(x) = -\sum_{\text{all cuts } c} (-1)^{\mu_c} P^c(x) R^c(x) \]

where the sum is over all cuts \(c \).

If we define an inner product on trees by

\[(x, x') = \begin{cases} 0, & x \neq x' \\ |\text{Sym} x|, & x = x' \end{cases} \]

then there is an isomorphism \(\psi: T \rightarrow \mathbb{H}_k^* \) given by

\[\langle \psi(x), u \rangle = (x, B + u) \]
HOPF ALGEBRA B OF PLANAR ROOTED TREES

Planar Trees $\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot$

Ordered Forests $\cdot \neq \cdot \neq \cdot, \cdot \neq \cdot \neq \cdot, \cdot$

$B^+ : \text{Ordered Forests} \rightarrow \text{Planar Trees}$ $B^+ (\cdot \cdot \cdot) = \cdot$

Product of Planar Rooted Trees: Let $x = B^+ (\cdot \cdot \cdot \cdot \cdot)$. Then $x \otimes x'$ is the sum of the $\binom{2|x'| - 1}{k}$ trees obtained by attaching, in order, the k branches of x to vertices of x', respecting the natural order on the vertices of x'.
Although not commutative, this has the character of a shuffle product. In fact, it is an asymmetric shuffle product in the following sense: represent planar rooted trees by balanced bracket arrangements (BBR's):
All substrings of a BBA that are themselves BBA's components (correspond to branches of the planar rooted tree).

Say \(x, x' \) have corresponding BBA's \(c, c' \). Let \(c_1c_2...c_k \) be components of \(x \). Shuffle the symbols \(c_1, ..., c_k \) into the BBA \(c' \), then replace \(c_1, ..., c_k \) with corresponding BBA's for \(c = \langle c_1c_2 \rangle \), \(c' = \langle c_1c_2 \rangle \).

For \(c = \langle c_1c_2 \rangle \), \(c' = \langle c_1c_2 \rangle \) we have

\[
\begin{align*}
 c \cdot c' &= c_1c_2\langle c_1c_2 \rangle + c_1c_2\langle c_1c_2 \rangle + \langle c_1c_2 \rangle + \langle c_1c_2 \rangle + \langle c_1c_2 \rangle + \langle c_1c_2 \rangle \\
 &= \langle c_1c_2 \rangle + \langle c_1c_2 \rangle \\
 &= \langle c_1c_2 \rangle + \langle c_1c_2 \rangle
\end{align*}
\]

(Asymmetric since only components of the left-hand factor are kept together while shuffling.)
FOISSY HOPF ALGEBRA H_F

Our basic objects are ordered forests of planar rooted trees; juxtaposition product is now non-commutative, coproduct is that for Kreimer’s Hopf algebra

$$\Delta(x) = x \otimes x + \sum_{\text{admissible}} p^{c(x)} \otimes R^{c(x)}$$

Note that $p^{c(x)}$ can be ordered by using the order of the “new” root vertices; all planar rooted trees have a natural numbering of vertices:

![Diagram]

Antipode is

$$S(x) = - \sum (-1)^{|c|} p^{c(x)} \otimes R^{c(x)}$$
By some proof as before, \(P \cong H^*_p \)
but in fact \(H^*_p \cong H_1 \); Poisson gave an inner product on \(H^*_p \)
with \((F_G, H) = (F \otimes G, \Delta(H)) \).
If we define \(e_F \) by
\[
(e_F, G) = \delta_{FG}
\]
then the function \(x \mapsto e_{B_-(x)} \)
(where \(B_- = B_+^{-1} \)) is an isomorphism. For example,
\[
e_{e_{e_o}} = e_{e_o} = e_1 + 2e_{e_o}
\]
since \(e_{e_o} = e_o \), \(e_{e_o} = \mathbb{1} \) and \(e_1 = \mathbb{1} - 2\mathbb{1} \);
this corresponds to
\[
1 \otimes 1 = 2\mathbb{1} + \mathbb{1}.
\]
A COMMUTATIVE DIAGRAM

let \(l_k \) be the "ladder" \(B_+^{k-1}(\ast) \)

THE KRENER COPRODUCT FORMULA SHOWS THE \(l_k \) ARE DIVIDED POWERS, SO THERE IS A HOPF ALGEBRA MAP

\[
\text{Sym} \xrightarrow{l} H_k
\]

SENDING \(e_k \) TO \(l_k \). IN FACT, THE DIAGRAM

\[
\begin{array}{ccc}
\text{NSym} & \xrightarrow{l} & H_f \\
\pi \downarrow & & \downarrow \phi \\
\text{Sym} & \xrightarrow{l} & H_k
\end{array}
\]

COMMUTES, WHERE \(\pi : \text{NSym} \to \text{Sym} \)

ABELIANIZE AND \(\phi : H_f \to H_k \)

FORGETS ORDER.
THIS IS DUALIZED TO

\[Q_{\text{sym}} \leftarrow \mathcal{L} \rightarrow \mathcal{H}_k \]

\[U \uparrow \phi^* \]

\[\text{Sym} \leftarrow \mathcal{L} \rightarrow \mathcal{T} \]

Here, \(\mathcal{L} \) sends \(B_+(l_{i_1} \ldots l_{i_n}) \) to \(\mathcal{T} \) to the monomial quasisymmetric function \(m_{i_1 \ldots i_k} \), and all other trees to 0; \(\phi^* \) sends a rooted tree to a sum of planar rooted trees given by "exercising" \(\times \) by permuting branches out of all its vertices:

\[\phi^*(\Uparrow) = 2 \Uparrow + 2 \Uparrow + 2 \Uparrow, \]

and \(\mathcal{L} \) sends \(B_+(l_{i_1} \ldots l_{i_n}) \) to \(\mathcal{T} \) to

\[\sum_{j_{i_1}, j_{i_2} \ldots j_{i_n}} \hat{m}_{j_{i_1} j_{i_2} \ldots j_{i_n}}, \] and all other trees to 0.
\[2M_{211} + 2M_{121} + 2M_{112} \rightarrow 2e^+ + 2\bar{\nu} + 2\nu^+ \]

\[2m_{211} \leftarrow e^+ \uparrow \]