Multiple Zeta Values and Quasi-Symmetric Functions

Michael E. Hoffman

U. S. Naval Academy

Workshop on Grothendieck-Teichmüller Theory and Multiple Zeta Values
Isaac Newton Institute
9 April 2013
Outline

1. Multiple Zeta Values
2. The Quasi-Symmetric Functions
3. $\zeta : \text{QSym}^0 \to \mathbb{R}$ and its Extension ζ_u
4. $u = \gamma$ and Generating Functions
5. Genera and Topology
6. Factoring ζ_γ
7. MZVs of Even Arguments
Multiple Zeta Values

For positive integers i_1, i_2, \ldots, i_k with $i_1 > 1$ (to ensure convergence), we define the multiple zeta value (henceforth MZV) $\zeta(i_1, i_2, \ldots, i_k)$ as the sum of the k-fold series

$$\sum_{n_1 > n_2 > \cdots > n_k \geq 1} \frac{1}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}}.$$

We call k the depth of $\zeta(i_1, \ldots, i_k)$, and $i_1 + \cdots + i_k$ its weight. Of course, the MZVs of depth one are the values $\zeta(i)$ of the Riemann zeta function at positive integers $i > 1$, for which Euler proved the formula

$$\zeta(2i) = \frac{(2\pi)^2 i}{2(2i)!} |B_{2i}|,$$ \hspace{1cm} (1)

but he also studied depth-two MZVs. Interest in MZVs of general depth dates from about 1990. We will mention some topological appearances of MZVs later in this talk.
Let x_1, x_2, \ldots be a countable sequence of indeterminates, each of degree 1, and let

$$\mathcal{P} \subset \mathbb{Q}[[x_1, x_2, \ldots]]$$

be the set of formal power series in the x_i of bounded degree: \mathcal{P} is a graded \mathbb{Q}-algebra. Any $f \in \mathcal{P}$ is quasi-symmetric if the coefficients in f of

$$x_{i_1}^{p_1} x_{i_2}^{p_2} \cdots x_{i_n}^{p_n} \quad \text{and} \quad x_{j_1}^{p_1} x_{j_2}^{p_2} \cdots x_{j_n}^{p_n}$$

agree whenever $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$. The quasi-symmetric functions $QSym$ form an algebra, which properly includes the algebra Sym of symmetric functions, e.g.,

$$\sum_{i<j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + \cdots \quad (2)$$

is quasi-symmetric but not symmetric.
Monomial (Quasi)symmetric Functions

For a composition (ordered sequence of positive integers) $I = (i_1, \ldots, i_k)$, the corresponding monomial quasi-symmetric function $M_I \in \text{QSym}$ is defined by

$$M_I = \sum_{n_1 < n_2 < \cdots < n_k} x_{n_1}^{i_1} x_{n_2}^{i_2} \cdots x_{n_k}^{i_k}$$

(so (2) above is $M_{(2,1)}$). Evidently $\{M_I | I \text{ is a composition}\}$ is an integral basis for QSym. For any composition I, let $\pi(I)$ be the partition given by forgetting the ordering. For any partition λ, the monomial symmetric function m_λ is the sum of the M_I with $\pi(I) = \lambda$, e.g.,

$$m_{21} = M_{(2,1)} + M_{(1,2)}.$$

The set $\{m_\lambda | \lambda \text{ is a partition}\}$ is an integral basis for Sym.
Other Bases for Sym

1. The **elementary** symmetric functions are

\[e_k = M_{(1)^k} = m_{\pi((1)^k)}, \]

where \((1)^k\) is the composition consisting of \(k\) 1’s. Then \(\{e_\lambda | \lambda \text{ is a partition}\}\) is an integral basis for Sym, where \(e_\lambda = e_{\lambda_1} e_{\lambda_2} \cdots\) for \(\lambda = \pi(\lambda_1, \lambda_2, \ldots)\).

2. The **complete** symmetric functions are

\[h_k = \sum_{|I|=k} M_I = \sum_{|\lambda|=k} m_\lambda. \]

Then \(\{h_\lambda | \lambda \text{ is a partition}\}\) is an integral basis for Sym.

3. The **power-sum** symmetric functions are

\[p_k = M_{(k)} = m_k. \]

Then \(\{p_\lambda | \lambda \text{ is a partition}\}\) is a rational basis for Sym.
Multiplication of Monomial Quasi-Symmetric Functions

Two monomial quasi-symmetric functions M_I and M_J multiply according to a “quasi-shuffle” rule in which the parts of I and J are shuffled and also combined. For example,

$$M_{(1)}M_{(1,2)} = M_{(1,1,2)} + M_{(1,1,2)} + M_{(1,2,1)} + M_{(2,2)} + M_{(1,3)}$$

$$= 2M_{(1,1,2)} + M_{(1,2,1)} + M_{(2,2)} + M_{(1,3)}.$$

In general the number of terms in the product M_IM_J is

$$\min\{\ell(I),\ell(J)\} \sum_{i=0}^{\min\{\ell(I),\ell(J)\}} \binom{\ell(I) + \ell(J) - i}{i, \ell(I) - i, \ell(J) - i}$$

so, e.g., $M_{(1,1)}M_{(2,1)}$ has $\binom{4}{2} + \binom{3}{111} + \binom{2}{2} = 13$ terms:

$$M_{(1,1)}M_{(1,2)} = 3M_{(1,1,1,2)} + 2M_{(1,1,2,1)} + M_{(1,2,1,1)}$$
$$+ M_{(1,2,2)} + M_{(2,1,2)} + M_{(2,2,1)} + 2M_{(1,1,3)} + M_{(1,1,3,1)} + M_{(2,3)}.$$
Algebraic Structure of QSym

Over the rationals, the algebraic structure of QSym can be described as follows. Order compositions lexicographically:

\[
(1) < (1, 1) < (1, 1, 1) < \cdots < (1, 2) < \cdots < (2) < (2, 1) < \cdots < (3) < \cdots
\]

A composition \(I \) is Lyndon if \(I < K \) whenever \(I = JK \) for nonempty compositions \(J, K \).

Theorem (Reutenauer-Malevenuto, 1995)

QSym is a polynomial algebra on \(M_I, I \) Lyndon.

Since the only Lyndon composition ending in 1 is (1) itself, the subspace QSym\(^0\) of QSym generated by the \(M_I \) such that \(I \) ends in an integer greater than 1 is a subalgebra, and in fact QSym = QSym\(^0\)[\(M(1) \)].
The Function $A_- : \text{QSym} \to \text{QSym}$

Consider the linear function from QSym to itself defined by

$$A_-(M(a_1,\ldots,a_{k-1},a_k)) = \begin{cases} M(a_1,\ldots,a_{k-1}), & \text{if } a_k = 1, \\ 0, & \text{otherwise}. \end{cases}$$

(Here M_\emptyset is interpreted as 1, so $A_-(M(1)) = 1$.)

From the quasi-shuffle description of multiplication in QSym the following result can be proved.

Proposition

$A_- : \text{QSym} \to \text{QSym}$ is a derivation.

Note that $\ker A_- = \text{QSym}^0$. So if we think of QSym as $\text{QSym}^0[M(1)]$, then A_- is differentiation by $M(1)$.
There is a homomorphism $\zeta : \text{QSym}^0 \to \mathbb{R}$ given by

$$\zeta(M_I) = \zeta(i_k, i_{k-1}, \ldots, i_1)$$

for $I = (i_1, \ldots, i_k)$, induced by sending $x_j \to \frac{1}{j}$. (This is well-defined since $i_k > 1$ for $M_I \in \text{QSym}^0$.) Note $\zeta(p_i) = \zeta(M_{(i)}) = \zeta(i)$ for $i > 1$. The intersection

$$\text{Sym}^0 = \text{QSym}^0 \cap \text{Sym}$$

is the subspace of Sym generated by the m_λ such that all parts of λ are 2 or more, and is in fact the subalgebra of Sym generated by the p_i with $i > 1$.

Extending ζ to $\zeta_u : \text{QSym} \rightarrow \mathbb{R}[u]$

Since $\text{QSym} = \text{QSym}^0[M_{(1)}]$, we can extend ζ to a homomorphism $\zeta_u : \text{QSym} \rightarrow \mathbb{R}[u]$ by defining $\zeta_u(w) = \zeta(w)$ for $w \in \text{QSym}^0$ and $\zeta_u(M_{(1)}) = u$. In view of the Proposition above, we have the following commutative diagram:

$$
\begin{array}{ccc}
\text{QSym} & \xrightarrow{\zeta_u} & \mathbb{R}[u] \\
A & \downarrow & \downarrow d/du \\
\text{QSym} & \xrightarrow{\zeta_u} & \mathbb{R}[u]
\end{array}
$$

In the case $u = \gamma \approx 0.5572$ (Euler’s constant), the homomorphism ζ_u turns out to be especially useful. To explain why we must digress a bit to introduce some generating functions.
1. The generating function of the elementary symmetric functions is

\[E(t) = \sum_{i \geq 0} e_i t^i = \prod_{i \geq 1} (1 + tx_i). \]

2. That for the complete symmetric functions is

\[H(t) = \sum_{i \geq 0} h_i t^i = \prod_{i \geq 1} \frac{1}{1 - tx_i} = E(-t)^{-1}. \]

3. The logarithmic derivative of \(H(t) \) is the generating function \(P(t) \) for the power sums:

\[P(t) = \frac{d}{dt} \log H(t) = - \sum_{i \geq 1} \frac{d}{dt} \log(1 - tx_i) = \sum_{i \geq 1} p_i t^{i-1}. \]
Generating Functions Cont’d

The power series expansion of \(\psi(1 - t) \), where \(\psi \) is the logarithmic derivative of the gamma function, is

\[
\psi(1 - t) = -\gamma - \sum_{i \geq 2} \zeta(i) t^{i-1}.
\]

If \(u = \gamma \), then \(\zeta_u(p_1) = \gamma \) and so \(\zeta_u(P(t)) = -\psi(1 - t) \).

Hence (since \(P(t) = \frac{d}{dt} \log H(t) \)) we have

Theorem (Generating Function)

\[
\zeta_\gamma(H(t)) = \Gamma(1 - t).
\]

From \(E(t) = H(-t)^{-1} \) follows \(\zeta_\gamma(E(t)) = \Gamma(1 + t)^{-1} \).
Now it can be shown analytically that the generating function
\[F(s, t) = \sum_{n, m \geq 1} \zeta(n + 1, (1)^{m-1})s^n t^m \]
can be written
\[F(s, t) = 1 - \frac{\Gamma(1-t)\Gamma(1-s)}{\Gamma(1-t-s)}. \]

Applying the Generating Function Theorem, this is
\[F(s, t) = \zeta_\gamma \left(1 - \frac{H(t)H(s)}{H(t+s)} \right). \]

Now
\[H(t) = \exp \left(\sum_{i \geq 1} \frac{p_i t^i}{i} \right) = e^{p_1 t} \exp \left(\sum_{i \geq 2} \frac{p_i t^i}{i} \right), \]
so it follows that
\[
1 - \frac{H(t)H(s)}{H(t + s)} = 1 - \exp \left(\sum_{i \geq 2} p_i \frac{t^i + s^i - (t + s)^i}{i} \right)
\]
and hence, applying ζ_γ,
\[
\sum_{n,m \geq 1} \zeta(n + 1, (1)^{m-1}) s^n t^m = 1 - \exp \left(\sum_{i \geq 2} \zeta(i) \frac{t^i + s^i - (t + s)^i}{i} \right).
\]
Note that any MZV of the form $\zeta(n + 1, (1)^{m-1})$ is a polynomial in the $\zeta(i), i \geq 2$, with rational coefficients, though $M_{((1)^{m-1}, n+1)} \notin \text{Sym}$ for $m > 1$.
Hirzebruch’s Theory of Genera

A genus is a function ϕ that assigns to any manifold M in some class (say those with an almost complex structure) a number $\phi(M)$, subject to the requirement that

$$\phi(M \times N) = \phi(M)\phi(N).$$

For an almost complex M of dimension $2n$, a genus can be given by

$$\phi(M) = \langle K_n(c_1, \ldots, c_n), [M] \rangle,$$

where the $c_i \in H^{2i}(M; \mathbb{Z})$ are the Chern classes of M, $[M] \in H_{2n}(M; \mathbb{Z})$ is the fundamental class of M, and \{\(K_i\)\} is a multiplicative sequence: i.e., a sequence of homogeneous polynomials (with deg $K_i = i$) so that, if

$$K(1 + c_1 + c_2 + \cdots) = 1 + K_1(c_1) + K_2(c_1, c_2) + \cdots,$$

then $K(a)K(b) = K(ab)$ for any formal series a, b having constant term 1.
In fact, a multiplicative sequence \(\{ K_i \} \) is determined by the power series

\[
 K(1 + t) = 1 + r_1 t + r_2 t^2 + r_3 t^3 + \ldots,
\]

(3)
since (by the algebraic independence of the elementary symmetric functions \(e_i \)) we can think of the homogeneous terms of an arbitrary formal series as the elementary symmetric functions \(e_i \) in new variables \(x_1, x_2, \ldots \):

\[
 1 + e_1 + e_2 + e_3 \cdots = (1 + x_1)(1 + x_2)\cdots
\]

and thus

\[
 K(1 + e_1 + e_2 + \cdots) = K(1 + x_1)K(1 + x_2)\cdots.
\]

We say \(\{ K_i \} \) is the multiplicative sequence belonging to the power series (3).
Mirror Symmetry and the Γ-Genus

The Γ-genus is given by

$$\Gamma(M^{2n}) = \langle Q_n(c_1, \ldots, c_n), [M^{2n}] \rangle,$$

where $\{Q_i\}$ is the multiplicative sequence belonging to the series

$$\Gamma(1 + t)^{-1} = 1 + \gamma t + \frac{1}{2} (\gamma^2 - \zeta(2)) t^2 + \cdots.$$

The polynomials Q_i occur in the context of mirror symmetry, which involves Calabi-Yau manifolds (for our purposes, simply connected Kähler manifolds whose first Chern class vanishes).
String theorists are interested in Calabi-Yau manifolds of (real) dimension 6, since they occur in supersymmetry theory. (10-dimensional spacetime looks locally like $\mathbb{R}^4 \times M^6$, where M^6 is a Calabi-Yau manifold.) They found that Calabi-Yau manifolds seemed to come in “mirror pairs,” i.e. distinct manifolds that gave the same physics. At present there are mathematically rigorous constructions of mirrors only for certain classes of Calabi-Yau manifolds (or orbifolds), e.g., hypersurfaces or complete intersections in toric varieties.
Mirror Symmetry Cont’d

For one such class, Hosono, Klemm, Theisen and Yau (1995) found relations between the Chern classes of a manifold and period functions on its mirror: e.g., for a Calabi-Yau 3-fold X that is a complete intersection in a product of weighted projective spaces,

$$\langle c_3, [X] \rangle = \frac{1}{6\zeta(3)} \left\langle K_{ijk} \frac{\partial^3 c}{\partial \rho_i \partial \rho_j \partial \rho_k} \right\rangle_{(0, \ldots, 0)}.$$ (4)

Here $c(\rho_1, \rho_2, \ldots)$ are coefficients of a generalized hypergeometric series for the period function on a mirror of X (with gamma functions replacing the factorials so it can be differentiated), and K_{ijk} is the Yukawa coupling (B-model correlation function).
Libgober’s Formula

A. Libgober (1999) generalized these relations to higher dimensions: e.g., if \(X \) is a Calabi-Yau \(d \)-fold which is a hypersurface in a toric Fano manifold satisfying a technical condition,

\[
\langle Q_d(c_1, \ldots, c_d), [X] \rangle = \frac{1}{d!} K_{i_1, i_2, \ldots, i_d} \frac{\partial^d c(0, \ldots, 0)}{\partial \rho_{i_1} \partial \rho_{i_2} \cdots \partial \rho_{i_d}}
\]

where \(K_{i_1, \ldots, i_d} \) is the suitably normalized \(d \)-point function corresponding to a mirror \(\tilde{X} \) of \(X \) and \(c(\rho_1, \ldots, \) are the coefficients of the hypergeometric series for the holomorphic period of \(\tilde{X} \) at a maximal degeneracy point (of a partial compactification of the deformation space of \(\tilde{X} \)).
Libgober’s Formula Cont’d

We can write the coefficients of the Q_i in terms of MZVs.

Theorem

The coefficient of e_λ in $Q_i(e_1, \ldots, e_i)$ is $\zeta(\gamma)(m_\lambda)$ for any partition λ of i.

Proof.

We use Generating Function Theorem, together with the symmetry of the transition matrices between the bases $\{e_\lambda\}$ and $\{m_\lambda\}$ of Sym:

$$\sum_{j \geq 0} Q_j(e_1, \ldots, e_j) = \prod_{i \geq 1} \frac{1}{\Gamma(1 + x_i)} = \prod_{i \geq 1} \sum_{j \geq 0} \zeta(\gamma)(e_j)x_i^j = \sum_{\lambda} \zeta(\gamma)(e_\lambda)m_\lambda = \sum_{\lambda} \zeta(\gamma)(m_\lambda)e_\lambda.$$
Libgober’s Formula Cont’d

Thus, for example,

\[Q_2(c_1, c_2) = \zeta(2)c_2 + \frac{1}{2}(\gamma^2 - \zeta(2))c_1^2 \quad (6) \]

and

\[Q_3(c_1, c_2, c_3) = \zeta(3)c_3 + (\gamma\zeta(2) - \zeta(3))c_1c_2 + \frac{1}{6}(\gamma^3 - 3\gamma\zeta(2) + 2\zeta(3))c_1^3 \quad (7) \]

In the Calabi-Yau case we have \(c_1 = 0 \) and terms involving \(\gamma \) don’t appear: e.g.,

\[Q_3(0, c_2, c_3) = \zeta(3)c_3 \]

which shows that (5) generalizes (4).
Lu’s \(\hat{\Gamma} \)-genus

Rongmin Lu (2008) considered the genus belonging to the power series

\[
e^{-\gamma t} \Gamma(1 + t)^{-1},
\]

which he calls the \(\hat{\Gamma} \)-genus, and related it to a regularized \(S^1 \)-equivariant Euler class.

The logarithmic derivative of (8) is

\[
-\gamma - \psi(1 + t) = \sum_{i \geq 2} \zeta(i)(-t)^{i-1},
\]

which is just the corresponding one for the \(\Gamma \)-genus with \(\gamma \) removed. If we write \(\{P_n\} \) for the multiplicative sequence corresponding to the \(\hat{\Gamma} \)-genus, then \(P_n \) is \(Q_n \) with \(\gamma \) set to zero.
That is, the coefficient of e^λ in $P_n(e_1, \ldots, e_n)$ is $\zeta_0(m^\lambda)$. For example,

$$P_2(c_1, c_2) = \zeta(2)c_2 - \frac{1}{2}\zeta(2)c_1^2$$

from equation (6), and

$$P_3(c_1, c_2, c_3) = \zeta(3)c_3 - \zeta(3)c_1c_2 + \frac{1}{3}\zeta(3)c_1^3$$

from equation (7).
Hopf Algebra Characters

Now QSym is a graded Hopf algebra, with coproduct

$$\Delta(M_I) = \sum_{I=JK} M_J \otimes M_K$$

where the sum is over all decompositions of I as a juxtaposition (including the cases $J = \emptyset$ and $K = \emptyset$). Also, ζ_γ is a real character of the Hopf algebra QSym (that is, an algebra homomorphism $QSym \rightarrow \mathbb{R}$). A character χ of QSym is even if

$$\chi(w) = (-1)^{|w|}\chi(w) \quad (9)$$

for homogeneous elements w of QSym, and odd if

$$\chi(w) = (-1)^{|w|}\chi(S(w)), \quad (10)$$

where S is the antipode of QSym.
The ABS Theorem

Theorem (Aguiar, Bergeron and Sottille, 2006)

Any real character of a Hopf algebra has a unique decomposition in the convolution algebra into an even character times an odd one.

Thus, there is an even character ζ_+ and an odd character ζ_- so that $\zeta_\gamma = \zeta_+ \zeta_-$ in the convolution algebra, i.e.,

$$\zeta_\gamma(w) = \sum_{(w)} \zeta_+(w_1) \zeta_-(w_2)$$

(11)

using Sweedler’s notation for coproducts:

$$\Delta(w) = \sum_{(w)} w_1 \otimes w_2.$$
Primitives

The power sums $p_i = M(i)$ are primitive, i.e.

$$\Delta(p_i) = 1 \otimes p_i + p_i \otimes 1,$$

and so

$$\zeta(i) = \zeta(p_i) = \zeta_-(p_i) + \zeta_+(p_i). \quad (12)$$

Equation (9) implies that $\zeta_+(w) = 0$ for any odd-dimensional w, particularly $w = p_i$, i odd. On the other hand, equation (10) gives $\zeta_-(p_i) = 0$ for i even, since $S(p_i) = -p_i$. Together with equation (12), this says

$$\zeta_+(p_i) = \begin{cases}
\zeta(i), & i \text{ even}, \\
0, & i \text{ odd},
\end{cases}$$

and

$$\zeta_-(p_i) = \begin{cases}
0, & i \text{ even}, \\
\zeta(i), & i > 1 \text{ odd}, \\
\gamma, & i = 1.
\end{cases}$$
Even Parts Theorem

In general, computing $\zeta_+(M_I)$ and $\zeta_-(M_I)$ for an arbitrary monomial quasi-symmetric function M_I is difficult, apart from the general fact that

$$\zeta_+(M_I) = 0 \text{ if } |I| \text{ is odd}.$$

Nevertheless, there is the following result, which can be proved from the general theory of Aguiar-Bergeron-Sottille together with a specific result of Aguiar-Hsiao (2004).

Theorem

*If all parts of I are even, then $\zeta_-(M_I) = 0$.***
Computing ζ_+ and ζ_- on Sym

The situation is dramatically different if ζ_γ is restricted to Sym (which is all we need for the Γ- and $\hat{\Gamma}$-genera). The p_i generate Sym, so for every partition λ

$$m_\lambda = P_\lambda(p_1, p_2, p_3, p_4, \ldots)$$

for some polynomial P_λ with rational coefficients. Since ζ_+ and ζ_- are homomorphisms,

$$\zeta_-(m_\lambda) = P_\lambda(\gamma, 0, \zeta(3), 0, \ldots)$$

and

$$\zeta_+(m_\lambda) = P_\lambda(0, \zeta(2), 0, \zeta(4), \ldots).$$

In view of Euler’s identity (1), the latter formula means that $\zeta_+(m_\lambda)$ is a rational multiple of $\pi^{\vert \lambda \vert}$ when $\vert \lambda \vert$ is even (and of course $\zeta_+(m_\lambda) = 0$ when $\vert \lambda \vert$ is odd).
Generating Functions Yet Again

Since the involution of Sym that exchanges the e_i and the h_i leaves the odd p_i fixed, it follows that $\zeta_-(e_n) = \zeta_-(h_n)$, i.e.,

$$\zeta_\gamma \left(\frac{H(t)}{E(t)} \right) = 1.$$

On the other hand, $\zeta_+(E(t))$ is an even function, so $\zeta_+(E(t)) = \zeta_+(E(-t)) = \zeta_+(H(t))^{-1}$ and thus

$$\zeta_+ \left(\frac{H(t)}{E(t)} \right) = \zeta_+(H(t))^2.$$

Hence, using $\zeta_+ \zeta_- = \zeta_\gamma$ and the Generating Function Theorem,

$$\zeta_+(H(t))^2 = \zeta_+ \left(\frac{H(t)}{E(t)} \right) \zeta_- \left(\frac{H(t)}{E(t)} \right) = \zeta_\gamma \left(\frac{H(t)}{E(t)} \right) = \Gamma(1 - t) \Gamma(1 + t).$$
Factored Generating Function Theorem

Because of the reflection formula for the gamma function, this is

\[\zeta_+(H(t))^2 = \frac{\pi t}{\sin \pi t}. \]

Thus we have the following result.

Theorem (Factored Generating Function)

The ABS factors of \(\zeta_\gamma \) are given by

\[\zeta_+(E(t)) = \zeta_+(H(t))^{-1} = \sqrt{\frac{\sin \pi t}{\pi t}} \]

\[\zeta_-(E(t)) = \zeta_-(H(t)) = \sqrt{\frac{\sin \pi t}{\pi t}} \Gamma(1 - t). \]
Explicit Formula for $\zeta_-(e_n)$

There is also the explicit formula for e_n in terms of power sums:

$$e_n = \sum_{i_1+2i_2+\cdots+ni_n=n} \frac{(-1)^n}{i_1!i_2!\cdots i_n!}(-p_1)^{i_1}\cdots\left(-\frac{p_n}{n}\right)^{i_n},$$

which follows from

$$E(t) = H(-t)^{-1} = \exp\left(-\int_0^{-t} P(s)ds\right).$$

If we apply ζ_- to this, the minus signs cancel nicely to give

$$\zeta_-(e_n) = \sum_{i_1+3i_3+5i_5=\cdots=n} \frac{\gamma^{i_1}\zeta(3)^{i_3}\zeta(5)^{i_5}\cdots}{i_1!3^{i_3}i_3!5^{i_5}i_5!\cdots}. \quad (13)$$
An Example

To see how to put these results together, we note that

\[\sqrt{\frac{\sin\pi t}{\pi t}} = 1 - \frac{\pi^2 t^2}{12} + \frac{\pi^4 t^4}{1440} - \cdots \]

Then since the \(e_i \) are divided powers,

\[\Delta(e_4) = 1 \otimes e_4 + e_1 \otimes e_3 + e_2 \otimes e_2 + e_3 \otimes e_1 + e_4 \otimes 1 \]

and from the Factored Generating Function Theorem together with equations (11) and (13) it follows that

\[\zeta_\gamma(e_4) = \zeta_-(e_4) + \zeta_+(e_2)\zeta_-(e_2) + \zeta_+(e_4) \]

\[= \frac{\gamma^4}{4!} + \frac{\gamma\zeta(3)}{3} - \frac{\pi^2}{12} \cdot \frac{\gamma^2}{2} + \frac{\pi^4}{1440} \]

\[= \frac{\gamma^4}{24} - \frac{\gamma^2\zeta(2)}{4} + \frac{\gamma\zeta(3)}{3} + \frac{\zeta(4)}{16}. \]
Suppose now we consider the sum $E(2n, k)$ of all even-argument MZVs of weight $2n$ and depth k, i.e.,

$$E(2n, k) = \sum_{i_1+\cdots+i_k=n} \zeta(2i_1, \ldots, 2i_k).$$

Then of course $E(2n, 1) = \zeta(2n)$. It follows easily from results of Euler that $E(2n, 2) = \frac{3}{4} \zeta(2n)$, though no one seems to have pointed this out in print until Gangl, Kaneko and Zagier did in 2006. Last year Shen and Cai published the formulas

$$E(2n, 3) = \frac{5}{8} \zeta(2n) - \frac{1}{4} \zeta(2) \zeta(2n - 2)$$

$$E(2n, 4) = \frac{35}{64} \zeta(2n) - \frac{5}{16} \zeta(2) \zeta(2n - 2)$$
A Formula for $E(2n, k)$

Inspired by these results, I proved the general formula

$$E(2n, k) = \frac{1}{2^{2(k-1)}} \binom{2k - 1}{k} \zeta(2n)$$

$$- \sum_{j=1}^{\left\lfloor \frac{k-1}{2} \right\rfloor} \frac{1}{2^{2k-3}(2j + 1)B_{2j}} \binom{2k - 2j - 1}{k} \zeta(2j)\zeta(2n - 2j).$$

My proof used the following explicit generating-function result.

Theorem (Even MZV Sums)

$$E(t, s) := 1 + \sum_{n,k \geq 1} E(2n, k) t^n s^k = \frac{\sin(\pi \sqrt{(1 - s)t})}{\sqrt{1 - s \sin(\pi \sqrt{t})}}.$$
Let $N_{n,k}$ be the sum of all monomial symmetric functions corresponding to partitions of n of length k. Then $N_{n,k} = 0$ unless $k \leq n$, and $N_{k,k} = e_k$. We have $\zeta \mathcal{D}(N_{n,k}) = E(2n, k)$, where $\mathcal{D} : \text{QSym} \to \text{QSym}$ is the degree-doubling function that sends x_i to x_i^2, and thus $M(i_1, \ldots, i_k)$ to $M(2i_1, \ldots, 2i_k)$. If we let

$$\mathcal{F}(t, s) = 1 + \sum_{n,k \geq 1} N_{n,k} t^n s^k$$

then $E(t, s) = \zeta \mathcal{D}(\mathcal{F}(t, s))$. (Note there is no need to use an extension of ζ here, since $\mathcal{D} (\text{QSym}) \subset \text{QSym}^0$.)
More Generating Functions Cont’d

There is the formal factorization

\[\mathcal{F}(t, s) = \prod_{i=1}^{\infty} \left(1 + stx_i + st^2x_i^2 + \ldots \right) \]

\[= \prod_{i=1}^{\infty} \frac{1 + (s - 1)tx_i}{1 - tx_i} \]

\[= E((s - 1)t)H(t) \]

To apply the homomorphism \(\zeta \mathcal{D} \) to both sides of this equation, we recall the formula

\[\zeta \mathcal{D}(e_n) = \zeta((2)^n) = \frac{\pi^{2n}}{(2n + 1)!} \]

(which appeared in my 1992 paper), so that
More Generating Functions Cont’d

\[\zeta_D(E(t)) = \frac{\sinh(\pi \sqrt{t})}{\pi \sqrt{t}}. \]

Hence

\[\zeta_D(H(t)) = \frac{\pi \sqrt{-t}}{\sinh(\pi \sqrt{-t})} = \frac{\pi \sqrt{t}}{\sin(\pi \sqrt{t})}, \]

from which follows

\[\zeta_D(F(s, t)) = \frac{\sinh(\pi \sqrt{(s-1)t})}{\pi \sqrt{(s-1)t}} \frac{\pi \sqrt{t}}{\sin(\pi \sqrt{t})} = \frac{\sin(\pi \sqrt{(1-s)t})}{\sqrt{1-s} \sin(\pi \sqrt{t})}, \]

and the Even MZV Sums Theorem is proved.
An Extension

Note that \(\mathcal{D}^2 : \text{QSym} \to \text{QSym} \) is the degree-quadrupling homomorphism that sends \(x_i \) to \(x_i^4 \). Then it is known (See Borwein, Bradley, and Broadhurst, Electron. J. Combin. 1997) that

\[
\zeta \mathcal{D}^2(E(-t)) = \frac{\sinh(\pi \sqrt[4]{t}) \sin(\pi \sqrt[4]{t})}{\pi \sqrt[4]{t}},
\]

from which follows

\[
\zeta \mathcal{D}^2(F(t, s)) = \frac{\sinh(\pi \sqrt[4]{(1-s)t}) \sin(\pi \sqrt[4]{(1-s)t})}{\sqrt{1-s} \sinh(\pi \sqrt[4]{t}) \sin(\pi \sqrt[4]{t})}.
\]

From this H. Yuan and J. Zhao obtained a (somewhat complicated) formula for the sum of all MZVs of depth \(k \) and weight \(4n \) having all arguments divisible by 4.