COUNTING ORDERED COMBINATIONS

In counting combinations, sometimes the order matters. There is a difference between putting on your sock and then your shoe, versus putting on your shoe and then your sock! If we have two variables x and y, there are four unordered combinations of degree three:

$$x^3, \quad x^2y, \quad xy^2, \quad y^3.$$

But if order matters, there are eight:

$$xxx, xxx, xxy, xyx, yxx, yxy, yyx, yyy.$$

How can we count these ordered combinations? Here’s an approach based on the “symbolic series” method of the text. Let S be the sum of all the ordered monomials in two variables x and y (and we throw in 1 for the empty monomial):

$$S = 1 + x + y + xx + xy + yx + yy + xxx + xxy + xyx + yxx + yyy + yxy + yyx + yyy + \cdots$$

Now since the order matters, every monomial (other than 1) must start with either x or y. If we group these two sets of terms, we have

$$S = 1 + x(1 + x + y + xx + xy + yx + yy + \cdots) + \quad y(1 + x + y + xx + xy + yx + yy + \cdots),$$

or $S = 1 + xS + yS$. We solve this formally to get

(1) $$S = \frac{1}{1 - x - y},$$

whatever that means. Let’s try to make sense out of equation (1) by replacing each monomial m by $t^{|m|}$, where $|m|$ is the degree of m. Then S becomes the generating function $S(t)$ that counts ordered monomials by degree, and equation (1) becomes

$$S(t) = \frac{1}{1 - t - t} = \frac{1}{1 - 2t} = 1 + 2t + 4t^2 + 8t^3 + \cdots$$

Clearly the coefficient of t^n is 2^n, so there are 2^n ordered monomials of degree n in x and y (or to put it another way, there are 2^n monomials of degree n in noncommuting variables x and y). This is really pretty obvious: in a monomial of degree n, you have n factors and two choices (x or y) for each factor. (Why doesn’t this reasoning work if x and y are allowed to commute?)
Exercise 1. Recall from the previous set of notes that there are \(\binom{n+2}{2} \) monomials of degree \(n \) in three commuting variables \(x, y, \) and \(z \). How many distinct monomials of degree \(n \) are there if \(x, y, \) and \(z \) don’t commute?

As the example of monomials shows, it’s actually easier to count things when you keep track of the order. Here’s another example. The ordered version of a partition is called a composition. Thus, \(3 + 1 \) and \(1 + 3 \) are considered distinct compositions of \(4 \) (even though they represent the same partition). If we leave out the plus signs, we can write the eight compositions of \(4 \) as

\[
(1111), \ (211), \ (121), \ (112), \ (22), \ (31), \ (13), \ (4).
\]

Let \(C \) be the symbolic sum of all compositions (with \(() \) as the empty composition of \(0 \)). Then

\[
C = () + (1) + (11) + (2) + (111) + (21) + (12) + (3) + (1111) + (211) + (121) + (112) + (22) + (31) + (13) + (4) + \cdots
\]

Now every composition must start with 1, or 2, or 3, etc. So if we define “multiplication” of compositions by juxtaposition (e.g., \((2) \star (11) = (211) \)), then

\[
C = () \star C + (1) \star C + (2) \star C + (3) \star C + \cdots
\]

or formally

\[
C = \frac{()}{() - (1) - (2) - (3) - \cdots}.
\]

Let’s try to make sense of equation (2) as we did with equation (1): replace each composition \(c \) by \(t^{|c|} \), where \(|c| \) is the weight of \(c \) (the sum of its parts). This takes \(C \) to the generating function \(C(t) \) that counts compositions by weight, so equation (2) becomes

\[
C(t) = \frac{1}{1 - t - t^2 - t^3 - \cdots} = \frac{1}{1 - \frac{t}{1-t}} = \frac{1-t}{1-2t}.
\]

Now

\[
\frac{1-t}{1-2t} = \frac{1}{1-2t} - \frac{t}{1-2t} = \sum_{n=0}^{\infty} 2^n t^n - \sum_{n=0}^{\infty} 2^n t^{n+1} = 1 + \sum_{n=1}^{\infty} (2^n - 2^{n-1}) t^n = 1 + \sum_{n=1}^{\infty} 2^{n-1} t^n,
\]

So there are \(2^{n-1} \) compositions of \(n \).
Actually there is an easier way to see that n has 2^{n-1} compositions: think of a row of n dots. If you insert dividers into some of the $n - 1$ positions between the dots, you specify a composition of n. Since each of the $n - 1$ positions can have a divider or not, that’s 2^{n-1} choices. But the generating-function method is flexible enough to handle many related questions, such as the one in the next exercise.

Exercise 2. Let Q_n be the number of compositions of n in which all the parts are 1’s and 2’s. For example, $Q_5 = 8$ because there are eight such compositions of 5:

$$(11111), \ (2111), \ (1211), \ (1121), \ (1112), \ (221), \ (212), \ (122).$$

Find the generating function

$$Q(t) = 1 + \sum_{n \geq 1} Q_n t^n.$$

Does this look like a generating function we’ve seen before?

We can apply the same techniques to counting planar rooted trees. Let P_n be the number of planar rooted trees with n vertices. Then $P_4 = 5$ since there are five planar rooted trees with 4 vertices:

Now let’s let \bar{F}_n be the number of ordered rooted forests of planar rooted trees. If we form a symbolic sum of all ordered forests, it looks like

$$\bar{F} = \emptyset + \bullet + \bullet + \cdots + \bullet + \bullet + \cdots + \bullet + \cdots$$

Since every nonempty ordered forest has a first tree, we can write this as

$$\bar{F} = \emptyset + \bullet \bar{F} + \bullet \bar{F} + \bullet \bar{F} + \bullet \bar{F} + \cdots$$

or

$$\bar{F} = \frac{\emptyset}{\emptyset} - \bullet - \bullet - \bullet - \cdots.$$

As with equations (1) and (2), we interpret equation (3) by replacing each symbol with t^w, where w is the symbol’s weight (in this case, the number of vertices). Then equation (3) becomes

$$1 + \bar{F}_1 t + \bar{F}_2 t^2 + \cdots = \frac{1}{1 - P_1 t - P_2 t^2 - P_3 t^3 - \cdots}.$$
But every ordered forest of planar rooted trees with \(n \) vertices corresponds to a planar rooted tree with \(n + 1 \) vertices, so \(\tilde{F}_n = P_{n+1} \) and the preceding equation is

\[
(4) \quad 1 + P_2 t + P_3 t^2 + P_4 t^3 = \frac{1}{1 - P_1 t - P_2 t^2 - P_3 t^3 - \cdots}.
\]

This is much easier than the equation we had in the previous set of notes. For if we let \(P(t) = 1 + P_1 t + P_2 t^2 + \cdots \), then equation (4) multiplied by \(t \) is

\[
P(t) - 1 = \frac{t}{2 - P(t)}
\]

or

\[
P(t)^2 - 3P(t) + t + 2 = 0.
\]

Solve this using the quadratic formula to get

\[
P(t) = \frac{3 - \sqrt{9 - 4(t + 2)}}{2} = \frac{3 - \sqrt{1 - 4t}}{2},
\]

where we have chosen the negative square root to get \(P(0) = 1 \). But this says

\[
P(t) = 1 + \frac{1 - \sqrt{1 - 4t}}{2},
\]

and comparison with the generating function for Catalan numbers shows \(P_n = C_{n-1} \) for \(n \geq 1 \). Of course this is the same result we had earlier via our isomorphism of planar trees with parenthesized products.