COUNTING LABELLED COMBINATIONS

Often, we are interested in counting objects with labels. For example, there are 3 labelled trees with three vertices:

\[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 \\
2 & 3 & 1 \\
\end{array} \]

Similarly, there are 16 labelled trees with four vertices.

As in the case of unlabelled counting, we will consider “molecules” built from “atoms,” with each atom having a weight and the weight of a molecule being the sum of the weights of an atom. We think of an atom of weight \(n \) as being able to accept \(n \) labels: a labelled atom of weight \(n \) is an atom of weight \(n \) labelled by the set \(\{1, 2, \ldots, n\} \). A labelled molecule of weight \(n \) is a collection of atoms labelled by disjoint subsets of \(\{1, 2, \ldots, n\} \). For example, if the atoms are labelled trees, there are 7 molecules of weight three:

\[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 2 & 1 \\
3 & 1 & 2 \\
\end{array} \]

If we know how to count labelled atoms, can we count labelled molecules? Let \(\hat{A}(t) \) be the exponential generating function of (nonempty) labelled atoms

\[\hat{A}(t) = a_1 t + a_2 \frac{t^2}{2!} + a_3 \frac{t^3}{3!} + \cdots \]

and let \(\hat{M}(t) \) be the exponential generating function of labelled molecules. We shall prove the following “exponential formula”:

\[(1) \quad \hat{M}(t) = \exp(\hat{A}(t)). \]

As in the unlabelled case, we will do this by stages. Suppose first that there is only one kind of labelled atom, of weight \(n \). Then \(\hat{A}(t) \) has only one term:

\[\hat{A}(t) = \frac{t^n}{n!} \]

Now how many labelled molecules are there? There is just one labelled molecule of weight \(n \), the one-atom molecule. The next heavier molecule has weight \(2n \), and
must contain exactly two atoms. But we have choices in how to split up the label set \{1, 2, \ldots, 2n\}: more precisely, we have
\[
\frac{1}{2} \binom{2n}{n} = \frac{(2n)!}{2(n!)^2}
\]
choices. This is because there are \(\binom{2n}{n} \) ways to choose the \(n \) labels for the first atom, leaving \(n \) labels for the second: but its doesn’t really matter which atom is first or second, hence the division by 2. As for molecules of weight 3\(n \), we can choose the \(n \) labels for the first atom in \(\binom{3n}{n} \) ways, leaving \(\binom{2n}{n} \) choices for the \(n \) labels on the second, which also determines the labels of the third. But it doesn’t really matter which atom is first, second, or third, so we divide by 6:
\[
\frac{1}{6} \binom{3n}{n} \binom{2n}{n} = \frac{(3n)!}{6(n!)^3}.
\]
Thus, our exponential generating function for molecules is
\[
\hat{M}(t) = 1 + \frac{t^n}{n!} + \frac{(2n)!}{2(n!)^2} \frac{t^{2n}}{(2n)!} + \frac{(3n)!}{6(n!)^3} \frac{t^{3n}}{(3n)!} + \cdots
\]
\[
= 1 + \frac{t^n}{n!} + \frac{1}{2} \left(\frac{t^n}{n!} \right)^2 + \frac{1}{6} \left(\frac{t^n}{n!} \right)^3 + \cdots
\]
\[
= \exp \left(\frac{t^n}{n!} \right)
\]
and equation (1) holds in this case.

Now suppose we have two kinds of atoms, “green” and “red.” Let
\[
\hat{M}_G(t) = 1 + g_1 t + g_2 \frac{t^2}{2!} + \cdots
\]
and
\[
\hat{M}_R(t) = 1 + r_1 t + r_2 \frac{t^2}{2!} + \cdots
\]
be the exponential generating functions for labelled molecules built exclusively of green and red molecules respectively. How many ways can we make a multicolored molecule of weight \(n \)? For any \(0 \leq k \leq n \), we can combine a weight-\(k \) green molecule and a weight-(\(n - k \)) red molecule. We can choose the green molecule in \(g_k \) ways, the red molecule in \(r_{n-k} \) ways, and we can split up the label set \(\{1, 2, \ldots, n\} \) in \(\binom{n}{k} \) ways (the number of ways of picking the labels for the green molecule). So in all we can make our multicolored weight-\(n \) molecule in
\[
r_n + \binom{n}{1} g_1 r_{n-1} + \binom{n}{2} g_2 r_{n-2} + \cdots + g_n = \sum_{k=0}^{n} \binom{n}{k} g_k r_{n-k}
\]
ways: but this means that the exponential generating function \(\hat{M}(t) \) for multicolored molecules is \(\hat{M}_G(t)\hat{M}_R(t) \).

Now we're ready to prove equation (1) in general. First suppose we have \(a_n \) atoms of weight \(n \) (and no atoms of any other weight). The result of the previous paragraph says we should multiply the exponential generating functions for each type of atom together:

\[
\left(\exp \left(\frac{t^n}{n!} \right) \right)^{a_n} = \exp \left(a_n \frac{t^n}{n!} \right).
\]

Now let’s combine atoms of different weights. Again we multiply the generating functions:

\[
\hat{M}(t) = \exp(a_1 t) \exp \left(a_2 \frac{t^2}{2!} \right) \exp \left(a_3 \frac{t^3}{3!} \right) \cdots = \exp \left(a_1 t + a_2 \frac{t^2}{2!} + a_3 \frac{t^3}{3!} + \cdots \right).
\]

But this is equation (1).

Perhaps the simplest application of equation (1) is to count set partitions. Here the only labelled atom of weight \(n \) is the set \(\{1, 2, \ldots, n\} \), and a molecule of weight \(n \) is a partition of \(\{1, 2, \ldots, n\} \). Since \(a_i = 1 \) for \(i = 1, 2, \ldots, \), in this case, the exponential generating function for counting partitions is

\[
\hat{M}(t) = \exp \left(t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots \right) = \exp(e^t - 1),
\]

a result we have already proved by other methods. But we can now do a lot more. For example, let \(E_n \) be the number of partitions of \(\{1, 2, \ldots, n\} \) into subsets with an even number of elements. What is the exponential generating function

\[
\hat{E}(t) = 1 + \sum_{n \geq 1} E_n \frac{t^n}{n!}?
\]

Since now we are only allowing atoms of even weight, equation (1) gives

\[
\hat{E}(t) = \exp \left(\frac{t^2}{2!} + \frac{t^4}{4!} + \cdots \right) = \exp(\cosh t - 1).
\]

Exercise 1. Work out a formula for the exponential generating function for \(O_n \), the number of partitions of \(\{1, 2, \ldots, n\} \) into subsets with an odd number of parts.

As another example of equation (1), suppose we want to count permutations. Each permutation can be written as a product of disjoint cycles: so a permutation is just a molecule, and a labelled atom of weight \(n \) is a cycle of \(\{1, 2, \ldots, n\} \). There are \((n-1)! \) labelled atoms of weight \(n \): for example, the \(3! = 6 \) cycles of \(\{1, 2, 3, 4\} \) are

\[
[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2].
\]

Thus, the exponential generating function for atoms is

\[
t + \frac{t^2}{2} + \frac{2t^3}{6} + \cdots + \frac{(n-1)! t^n}{n!} + \cdots = t + \frac{t^2}{2} + \frac{t^3}{3} + \cdots + \frac{t^n}{n} + \cdots.
\]
Now from integrating the geometric series

\[1 + t + t^2 + t^3 + \cdots = \frac{1}{1 - t} \]

we have

\[t + \frac{t^2}{2} + \frac{t^3}{3} + \cdots = -\log(1 - t) \]

and so the exponential generating function for permutations is

\[\exp(-\log(1 - t)) = \frac{1}{1 - t} = 1 + t + t^2 + t^3 + \cdots \]

This is certainly right: the coefficient of \(t^n/n! \) in (2) is \(n! \), which is indeed the number of permutations of \(\{1, 2, \ldots, n\} \). But it hardly seems worth the effort—we already knew there are \(n! \) permutations of \(\{1, 2, \ldots, n\} \). The real power of the generating-function method, though, is that we can now solve a host of related problems. For example, how many derangements \(d_n \) of \(\{1, 2, \ldots, n\} \) are there? (Recall that a derangement is a permutation with no fixed points.) This is just like counting permutations, except that we don’t allow cycles of length 1. So our exponential generating function for atoms is now

\[\frac{t^2}{2} + \frac{t^3}{3} + \cdots = -\log(1 - t) - t \]

and the exponential generating function for derangements is

\[1 + \sum_{n \geq 1} d_n \frac{t^n}{n!} = \exp(-\log(1 - t) - t) = \frac{e^{-t}}{1 - t} \]

Since

\[e^{-t} = 1 - t + \frac{t^2}{2!} - \frac{t^3}{3!} + \cdots \]

and multiplying by \((1 - t)^{-1} \) replaces the coefficient of \(t^n \) with the sum of the coefficients of \(1, t, \ldots, t^{n-1}, t^n \), we have

\[\frac{e^{-t}}{1 - t} = 1 + (1 - 1)t + (1 - 1 + \frac{1}{2!})t^2 + (1 - 1 + \frac{1}{2!} - \frac{1}{3!})t^3 + \cdots \]

and so equation (3) implies

\[\frac{d_n}{n!} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!}, \]

which is a result we obtained earlier by binomial inversion.

Here is another question: how many permutations \(od_n \) of \(\{1, 2, \ldots, n\} \) involve only cycles of odd length? Here we are allowing only atoms of odd weight, so our exponential generating function for atoms is
\[t + \frac{t^3}{3} + \frac{t^5}{5} + \cdots. \]

Observe that we get the same series from integrating

\[1 + t^2 + t^4 + t^6 + \cdots = \frac{1}{1-t^2}, \]

so

\[t + \frac{t^3}{3} + \frac{t^5}{5} + \cdots = \int_0^t \frac{ds}{1-s^2} = \frac{1}{2} \log \left(\frac{1+t}{1-t} \right). \]

Now apply equation (1) to conclude that the exponential generating function for the odd-cycle permutations is

\[1 + \sum_{n \geq 1} od_n \frac{t^n}{n!} = \exp \left(\frac{1}{2} \log \left(\frac{1+t}{1-t} \right) \right) = \sqrt{\frac{1+t}{1-t}}. \]

Exercise 2. Show that the exponential generating function for the number of permutations \(ev_n \) of \(\{1, 2, \ldots, n\} \) involving only cycles of even length is

\[1 + \sum_{n \geq 1} ev_n \frac{t^n}{n!} = \frac{1}{\sqrt{1-t^2}}. \]