A Note on Parametrization

The key to parametrization is to realize that the goal of this method is to describe the location of all points on a geometric object, a curve, a surface, or a region. This description must be one-to-one and onto: every point must be described once and only once.

1 Parametrization of Curves in R^2

Let us begin with parametrizing the curve C whose equation is given by

$$x^2 + y^2 = 4$$

i.e., a circle of radius 2 centered at the origin. We start by associating a position vector r to each point (x, y) on C through the relation

$$r = \langle x, y \rangle.$$

The coordinates x and y in (2) are not arbitrary -- they are related through equation (1). This means that we are free to assign a value to only one of the coordinates of a typical point on C; the other coordinate must be determined from the equation of the circle. For this reason we say C has one degree of freedom.

Choosing x as the parameter for C, we see from (1) that

$$y = \pm \sqrt{4 - x^2},$$

where the positive square root describes those points on C that lie above the x-axis and the negative square root the points below the x-axis. The complete parametrization of C is

$$r_1(x) = \langle x, \sqrt{4 - x^2} \rangle \quad \text{and} \quad r_2(x) = \langle x, -\sqrt{4 - x^2} \rangle,$$

where $-2 \leq x \leq 2$ for r_1 and $-2 < x < 2$ for r_2. Note that the points $(-2,0)$ and $(2,0)$ are arbitrarily assigned to r_1. We can now use the parametrization of C to determine tangent vectors to C, plot C on a graphics software, or to perform a line integral around C.

Although the parametrization in (3) is adequate for the purpose of describing C, it is not the most convenient description of this curve. A more efficient way to view C is to use polar coordinates to describe its points: $x = 2\cos\theta, y = 2\sin\theta$, with $\theta \in [0, 2\pi)$. So C can also be parametrized as

$$r_3(\theta) = \langle 2\cos\theta, 2\sin\theta \rangle, \quad \theta \in [0, 2\pi).$$

Note that r_3 in (4) does the job of both r_1 and r_2 in (3).

The parametrizations r_1, r_2 and r_3 are just a few ways out of the infinitely many ways that one could describe C. Here are three other parametrizations of the same curve:

$$r_4(t) = \langle 2\sin t, 2\cos t \rangle, \quad t \in [0, 2\pi),$$

(5)
where C is traversed in the clockwise direction,

$$r_5(u) = (-2 \sin u, 2 \cos u), \quad u \in [0, 2\pi),$$

where C is traversed in the counterclockwise direction (how is r_5 different from r_3?) and

$$r_6(w) = (2 \sin 2w, 2 \cos 2w), \quad w \in [0, \pi).$$

To understand the difference between r_4 and r_6, compute the speed of a particle traveling around C according to these parametrizations.

Let us now consider parametrizations of other familiar curves. Any two dimensional curve whose equation is given by $y = f(x)$ can be parametrized as

$$r(x) = \langle x, f(x) \rangle, \quad x \in (a, b),$$

so, for instance, the straight line $y = mx + b$ can be viewed as

$$r(x) = \langle x, mx + b \rangle.$$

The circle of radius a centered at (b, c) is parametrized as

$$r(\theta) = \langle b + a \cos \theta, c + a \sin \theta \rangle, \quad \theta \in (0, 2\pi].$$

The ellipse whose equation is given by $a^2 x^2 + b^2 y^2 = c^2$ is parametrized as (to see where the following expressions come from, divide $a^2 x^2 + b^2 y^2 = c^2$ by c^2 and set the term containing x^2 equal to $\cos^2 t$ and the one containing y^2 to $\sin^2 t$)

$$r(t) = \langle \frac{c}{a} \cos t, \frac{c}{b} \sin t \rangle \quad t \in (0, 2\pi).$$

2 Parametrization of Curves in R^3

Similar to curves in R^2, curves in R^3 still have only one degree of freedom, that is, a single parameter is sufficient to describe the coordinates of a typical point on curves in R^3. As an example, consider the straight line C that connects the two points $P = (1, 2, 1)$ and $Q = (-1, 1, 3)$. Let $P = (1, 2, 1)$ and $Q = (-1, 1, 3)$. Define $v = Q - P = (-2, -1, 2)$. Note that v is parallel to the line C. So every point S on C can be accessed by the vector

$$S = P + tv$$

for some $t \in R$. So

$$r(t) = \langle 1, 2, 1 \rangle + t\langle -2, -1, 2 \rangle, \quad t \in R$$

is a parametrization of C. In terms of coordinates, (12) is equivalent to

$$\begin{align*}
x(t) &= 1 - 2t \\
y(t) &= 2 - t \\
z(t) &= 1 + 2t
\end{align*}$$
Every straight line \(C \), whether in \(R^2 \) or \(R^3 \), can be parametrized as

\[
\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad t \in \mathbb{R}
\]

where \(\mathbf{r}_0 \) is the position vector corresponding to a known point on \(C \) (such as \(\langle 1, 2, 1 \rangle \) in our previous example), and \(\mathbf{v} \) is a vector parallel to \(C \). For instance, to find the parametrization of the line of intersection between the two planes \(2x - 3y + z = 2 \) and \(x + y + z = 0 \), first we find a point on this line by setting \(z = 0 \) in the equations of the planes and then solve for \(x \) and \(y \) to see that \(\left(\frac{2}{5}, -\frac{2}{5}, 0 \right) \) lies on \(C \). Next, we note that the vectors \(\mathbf{n}_1 = \langle 2, -3, 1 \rangle \) and \(\mathbf{n}_2 = \langle 1, 1, 1 \rangle \) are normal to the planes. Therefore,

\[
\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = \langle -4, -1, 5 \rangle
\]

is parallel to \(C \). Therefore

\[
\mathbf{r}(t) = \left(\frac{2}{5}, -\frac{2}{5}, 0 \right) + t\langle -4, -1, 5 \rangle
\]

is a parametrization of \(C \).

More complicated curves are parametrized similarly. Typical points on a curve \(C \) are accessed by a position vector \(\mathbf{r} \) of the form

\[
\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle.
\]

For example, the parametrization \(\langle \sin t, \cos t, t \rangle \) describes a helix in \(R^3 \). Or the intersection of the plane \(x + y + z = 1 \) and the cylinder \(x^2 + y^2 = 1 \) is given by

\[
\mathbf{r}(t) = \langle \cos t, \sin t, 1 - \cos t - \sin t \rangle, \quad t \in (0, 2\pi].
\]

3 Parametrization of Surfaces

Surfaces in \(R^3 \) are characterized by two degrees of freedom; one is allowed to vary two parameters independently to cover all points on a surface. The simplest examples are surfaces that are graphs of functions \(f \) that depend on two variables, \(z = f(x, y) \). Such surfaces are often parametrized as

\[
\mathbf{r}(x, y) = \langle x, y, f(x, y) \rangle, \quad a < x < b, \quad c < y < d.
\]

For example, the surface \(z = x^2 + y^2 \) over the unit square is parametrized as

\[
\mathbf{r}(x, y) = \langle x, y, x^2 + y^2 \rangle, \quad 0 < x < 1, \quad 0 < y < 1.
\]

The cylinder \(x^2 + y^2 = 1 \) is parametrized as

\[
\mathbf{r}(\theta, z) = \langle \cos \theta, \sin \theta, z \rangle, \quad \theta \in (0, 2\pi], \quad z \in \mathbb{R},
\]

while the cylinder \(x^2 + z^2 = 4 \) is parametrized as

\[
\mathbf{r}(\theta, y) = \langle 2\cos \theta, y, 2\sin \theta \rangle, \quad \theta \in (0, 2\pi], \quad y \in \mathbb{R},
\]
The surface of the disk of radius a in the plane $z = b$ centered at the origin is given by
\[r(u, v) = \langle u \cos v, u \sin v, b \rangle, \quad u \in [0, 1], \quad v \in (0, 2\pi]. \] (21)

Certain surfaces are best parametrized in spherical coordinates where
\[
\begin{cases}
 x = \rho \cos \theta \sin \phi, \\
y = \rho \sin \theta \sin \phi, \\
z = \rho \cos \phi.
\end{cases}
\] (22)

For example, the cone $z^2 = x^2 + y^2$ can be parametrized as
\[r(\rho, \theta) = \frac{\sqrt{2}}{2} (\rho \cos \theta, \rho \sin \theta, \rho), \quad \rho \in R, \quad \theta \in (0, 2\pi]. \] (23)

Similarly, the northern hemisphere of radius 3 centered at the origin may be parametrized as
\[r(\theta, \phi) = 3 (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi), \quad \theta \in (0, 2\pi], \quad \phi \in [0, \frac{\pi}{2}]. \] (24)

An alternative way of parametrizing this surface is as follows:
\[r(x, y) = 3 (x, y, \sqrt{9 - x^2 - y^2}), \quad x^2 + y^2 \leq 9. \] (25)

The boundary of this surface (the circle of radius 3 in the xy-plane and centered at the origin) is best parametrized using (24) by setting $\phi = \frac{\pi}{2}$ in that relation to get
\[r(\theta) = 3 (\cos \theta, \sin \theta, 0), \quad \theta \in (0, 2\pi]. \] (26)

Once a parametrization $r(u, v)$ of a surface S is known, the vector
\[r_u \times r_v \]
defines a normal vector to S.

4 Parametrization of Regions in R^3

Regions in R^3 have three degrees of freedom. They are parametrized by $r(u, v, w)$ where u, v and w take on values in respective intervals. For example, the region bounded by the cylinder $x^2 + y^2 = 1$ and the planes $z = -2$ and $z = 1$ is parametrized as
\[r(r, \theta, z) = \langle r \cos \theta, r \sin \theta, z \rangle, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi, \quad -2 \leq z \leq 1. \] (27)

The boundary of this region consists of three surfaces S_1, S_2 and S_3 given by
\[
\begin{cases}
 S_1 : \quad r_1(u, v) = \langle u \cos v, u \sin v, -2 \rangle, \quad 0 \leq u \leq 1, \quad 0 \leq v < 2\pi, \\
 S_2 : \quad r_2(u, v) = \langle u \cos v, u \sin v, 1 \rangle, \quad 0 \leq u \leq 1, \quad 0 \leq v < 2\pi, \\
 S_3 : \quad r_3(u, v) = \langle \cos v, \sin v, u \rangle, \quad -2 \leq u \leq 1, \quad 0 \leq v < 2\pi.
\end{cases}
\] (28)
Similarly, the region inside the northern hemisphere of radius 2 is parametrized as follows:

\[
\mathbf{r}(\rho, \theta, \phi) = \langle \rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi \rangle, \quad 0 \leq \rho \leq 2, \quad 0 \leq \theta < 2\pi, \quad 0 \leq \phi \leq \frac{\pi}{2}
\]

(29)

The boundary of this region consists of two surfaces \(S_1 \) and \(S_2 \) given by

\[
\begin{align*}
\begin{cases}
S_1 : & \mathbf{r}_1(\theta, \phi) = 2 \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle, \quad 0 \leq \theta < 2\pi, \quad 0 \leq \phi < \frac{\pi}{2}, \\
S_2 : & \mathbf{r}_2(r, \theta) = \langle r \cos \theta, r \sin \theta, 0 \rangle, \quad 0 \leq r \leq 2, \quad 0 \leq \theta < 2\pi.
\end{cases}
\end{align*}
\]

(30)