A Review of Useful Mathematica Commands
To plot the graph of the function y = sin(2x) + ln x, in the interval (1,5):
Plot[Sin[2x]+Log[x], {x, 1, 5}]
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr1.gif]](../_files/images/reviewgr1.gif)
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr3.gif]](../_files/images/reviewgr3.gif)
To label this graph:
Show[%, PlotLabel-> "Midshipman Joe Smith, 979797"]
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr4.gif]](../_files/images/reviewgr4.gif)
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr5.gif]](../_files/images/reviewgr5.gif)
To draw several graphs on the same screen:
Plot[Evaluate[Table[Sin[i x], {i, 1, 3}]], {x, -2 Pi, 2 Pi}]
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr6.gif]](../_files/images/reviewgr6.gif)
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr7.gif]](../_files/images/reviewgr7.gif)
To plot snapshots of a function of two variables (such as
u(x,t), where u is the temperature profile of a rod at x at
time t):
u[x_, t_] = Exp[-Pi t] Sin[Pi x/3];
Plot[Evaluate[Table[u[x, t], {t, 0, 1, 0.1}]], {x, 0, 3}]
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr8.gif]](../_files/images/reviewgr8.gif)
![[Graphics:reviewgr2.gif]](../_files/images/reviewgr2.gif)
![[Graphics:reviewgr9.gif]](../_files/images/reviewgr9.gif)
To plot u(x,t), when u is found using the method of separation
of variables (e.g., u(x,t) = sum from i=1 to 20 of 1/i exp(-pi i t)
sin(pi i x/3)):
u[x_, t_] = Sum[1/i Exp[-Pi i t] Sin[Pi i x/3],{i, 20}];
Plot[Evaluate[Table[u[x, t], {t, 0, 1, 0.1}]], {x, 0, 3}]
![[Graphics:reviewgr10.gif]](../_files/images/reviewgr10.gif)
![[Graphics:reviewgr11.gif]](../_files/images/reviewgr11.gif)
To solve the system of differential equations
x' = sin x cos y, y' = -0.1 y- cos x sin y,
x(0) = 1, y(0) = -1,
for t in the interval (0, 20):
sol = NDSolve[{x'[t] == Sin[x[t]] Cos[y[t]],
y'[t] == -0.1 y[t]- Cos[x[t]] Sin[y[t]],
x[0] == 1, y[0] == -1}, {x, y}, {t, 0, 20}];
ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, 20}]
![[Graphics:reviewgr12.gif]](../_files/images/reviewgr12.gif)
![[Graphics:reviewgr13.gif]](../_files/images/reviewgr13.gif)
To draw contours of a function of two variables (e.g.,
f(x,y) = sin 3x cos 2y):
ContourPlot[Sin[3 x] Cos[2 y], {x, -1, 1}, {y, -1, 1}]
![[Graphics:reviewgr14.gif]](../_files/images/reviewgr14.gif)
![[Graphics:reviewgr15.gif]](../_files/images/reviewgr15.gif)
To get levels with smoother boundaries:
ContourPlot[Sin[3 x] Cos[2 y], {x, -1, 1}, {y, -1, 1},
PlotPoints->40]
![[Graphics:reviewgr16.gif]](../_files/images/reviewgr16.gif)
![[Graphics:reviewgr17.gif]](../_files/images/reviewgr17.gif)
To draw a line between two points (0, 1) and (-1, 2):
Show[Graphics[Line[{{0,1},{-1,2}}]]]
![[Graphics:reviewgr18.gif]](../_files/images/reviewgr18.gif)
![[Graphics:reviewgr19.gif]](../_files/images/reviewgr19.gif)
To draw a line between the two points (0,1,0) and (-1, 2, 2):
Show[Graphics3D[Line[{{0,1,0}, {-1,2,2}}]]]
![[Graphics:reviewgr20.gif]](../_files/images/reviewgr20.gif)
![[Graphics:reviewgr21.gif]](../_files/images/reviewgr21.gif)
To draw a vector field (such as v = <y, -x>):
<<Graphics`PlotField`
a=PlotVectorField[{y, -x}, {x, -1, 1}, {y, -1, 1}]
![[Graphics:reviewgr22.gif]](../_files/images/reviewgr22.gif)
![[Graphics:reviewgr23.gif]](../_files/images/reviewgr23.gif)
To combine the above vector field with the contours of its
associated stream function psi = 1/2(x^2 + y^2):
b=ContourPlot[-1/2(x^2+y^2), {x, -1, 1}, {y, -1, 1}];
Show[b,a]
![[Graphics:reviewgr24.gif]](../_files/images/reviewgr24.gif)
![[Graphics:reviewgr25.gif]](../_files/images/reviewgr25.gif)
![[Graphics:reviewgr26.gif]](../_files/images/reviewgr26.gif)
