Local cohomology at determinantal ideals

Uli Walther
Purdue University
With Gennady Lyubeznik, Anurag Singh.

AMS Eastern, Halifax, October 2014
Notation

- $R = \mathbb{Z}[X]$, $X = m \times n$ matrix of indeterminates.
- $R_p = R/pR$; $R_0 = \mathbb{Q} \otimes_{\mathbb{Z}} R$.
- $I_t =$ideal of t-minors of X.

Object of desire:

$H^\bullet_{I_t}(R)$, local cohomology modules.
Notation

- $R = \mathbb{Z}[X]$, $X = m \times n$ matrix of indeterminates.
- $R_p = R/pR$; $R_0 = \mathbb{Q} \otimes \mathbb{Z} R$.
- $I_t =$ ideal of t-minors of X.

Object of desire:

$H_{I_t}^\bullet (R)$, local cohomology modules.
Local cohomology

\[A = \text{Noetherian ring, } \alpha = A\text{-ideal}, \]
\[f_1, \ldots, f_k \in \alpha \text{ with } \sqrt{\alpha} = \sqrt{f_1, \ldots, f_k}. \]

- \(C_f^s = \bigoplus A[1/(f_{i_1} \cdots f_{i_s})]. \)
- \(C_f^s \rightarrow C_f^{s+1} \) sum of signed localization maps
- Gives complex \(C_f^\bullet \) such that
 - cohomology is supported inside \(\alpha \),
 - different choices of \(f \) give homotopic complexes,
 - even if they generate different ideals.

Notation: \(H^s(C_f^\bullet) =: H_\alpha^s(A) \) for any choice \(f \).
A = Noetherian ring, \(a = A\)-ideal,
\(f_1, \ldots, f_k \in a \) with \(\sqrt{a} = \sqrt{f_1, \ldots, f_k} \).

- \(C_f^s = \bigoplus A[1/(f_{i_1} \cdots f_{i_s})] \).
- \(C_f^s \rightarrow C_f^{s+1} \) sum of signed localization maps
- Gives complex \(C_f^\bullet \) such that
 - cohomology is supported inside \(a \),
 - different choices of \(f \) give homotopic complexes,
 - even if they generate different ideals.

Notation: \(H^s(C_f^\bullet) =: H^s_a(A) \) for any choice \(f \).
A = Noetherian ring, $\mathfrak{a} = A$-ideal, $f_1, \ldots, f_k \in \mathfrak{a}$ with $\sqrt{\mathfrak{a}} = \sqrt{f_1, \ldots, f_k}$.

- $C_f^s = \bigoplus A[1/(f_1 \cdots f_s)]$.
- $C_f^s \longrightarrow C_f^{s+1}$ sum of signed localization maps
- Gives complex C_f^\bullet such that
 - cohomology is supported inside \mathfrak{a},
 - different choices of f give homotopic complexes,
 - even if they generate different ideals.

Notation: $H^s(C_f^\bullet) =: H^s_{\mathfrak{a}}(A)$ for any choice f.
Local cohomology, II

Some properties:

- Local cohomology vanishes beyond arithmetic rank.
- Alternatively: $H^s_a(\cdot) = \mathbb{R}^s(\Gamma_a(\cdot))$ where
 \[
 \Gamma_a(M) = \{ m \in M \mid \text{supp}(A \cdot m) \subseteq \text{Var}(a) \}.
 \]

- It is the algebraic geometer’s version of relative cohomology:
 - $Y \subseteq X$ closed; \mathcal{F} sheaf on X, then get exact natural
 \[
 H^s_Y(X, \mathcal{F}) \longrightarrow H^s(X, \mathcal{F}) \longrightarrow H^s(X \setminus Y, \mathcal{F}) \longrightarrow H^{s+1}_Y(X, \mathcal{F})
 \]
- $H^s_a(A) = \lim_{r \to} H^s(A, \{ f_1^r, \ldots, f_k^r \})$.

- related to:
 - topology if $\mathbb{Q} \subseteq A$;
 - tight closure if $\mathbb{Z}/p\mathbb{Z} \subseteq A$.

Uli Walther
Local cohomology at determinantal ideals
Some methods

- $H^s_\alpha(A)$ is usually not Noetherian.
- Frivolous example: $A = \mathbb{k}[x]$, $\alpha = (x)$. Then $H^s_\alpha(A) = 0$ for $s \neq 1$ while $H^1_\alpha(A)$ is
 \[
 \frac{\mathbb{k}\langle x, \partial_x \rangle \cdot \frac{1}{x}}{A}
 \]
 if $\mathbb{Q} \subseteq A$,
 \[
 \bigcup_e (A/F^e(\alpha))
 \]
 if $\mathbb{Z}/p\mathbb{Z} \subseteq A$,
 and equal to $\bigoplus_{r<0} \mathbb{k} \cdot x^r$ in either case.
- Lessons from the example:
 - $H^s_\alpha(A)$ is module over $A[F]$ if $\mathbb{Z}/p\mathbb{Z} \subseteq A$,
 - $H^s_\alpha(A)$ is module over $D(A, \mathbb{Q})$ if $\mathbb{Q} \subseteq A$,
 - $H^s_\alpha(A)$ is module over $D(A, \mathbb{Z})$ in any case.

These rings are bigger, not commutative, not always Noetherian.
Some methods

- $H^s_a(A)$ is usually not Noetherian.

Frivolous example: $A = \mathbb{k}[x], \ a = (x)$. Then $H^s_a(A) = 0$ for $s \neq 1$ while $H^1_a(A)$ is

- $\frac{\mathbb{k}\langle x, \partial_x \rangle \cdot \frac{1}{x}}{A}$ if $\mathbb{Q} \subseteq A$,

- $\bigcup_e (A/F^e(a))$ if $\mathbb{Z}/p\mathbb{Z} \subseteq A$,

and equal to $\bigoplus_{r<0} \mathbb{k} \cdot x^r$ in either case.

Lessons from the example:

- $H^s_a(A)$ is module over $A[F]$ if $\mathbb{Z}/p\mathbb{Z} \subseteq A$,

- $H^s_a(A)$ is module over $D(A, \mathbb{Q})$ if $\mathbb{Q} \subseteq A$,

- $H^s_a(A)$ is module over $D(A, \mathbb{Z})$ in any case

These rings are bigger, not commutative, not always Noetherian.
In any characteristic: (but over a domain)
- I_t is prime \((\text{de Concini–Eisenbud–Procesi})\)
- Cohen–Macaulay \((\text{Hochster–Eagon})\)
- of height $h_t := (mt + 1)(nt + 1)$
- and arithmetic rank $mn - t^2 + 1$. \((\text{Bruns–Schwänzl})\)

In positive characteristic,
- Frobenius powers of I_t are also perfect.
- So $H_{I_t}^{> h_t}(R_p) = 0$.

In characteristic zero,
- Powers of I_t or (f_1^r, \ldots, f_k^r) not CM, even for $m = 2 = n - 1 = t$.
- $H_{I_t}^{> h_t}(R)$ not necessarily zero.
Motivation:

- If \(m = 2 = n - 1 = t \), ("the 2 \times 3 case") then \(h_2 = 2 \), \(\text{ara}(l_2) = 3 \).
- \(H^3_{l_2}(R_0) \neq 0 \) (Hochster, -).
- Huneke, Katz, Marley: if \(\phi: R_0 \rightarrow A \supset \mathbb{Q} \) with \(\dim(\phi(R_0)) < 6 \) then \(H^3_{l_2}(A) = 0 \)
- Does not follow from general vanishing theorems à la Grothendieck–Faltings–Huneke–Lyubeznik.

Back to \(R \):

- there is an exact sequence

\[
0 \rightarrow \mathbb{Z}\text{-torsion} \hookrightarrow H^3_{l_2}(R) \xrightarrow{\iota} H^3_{l_2}(R_0) \rightarrow \mathbb{Z}\text{-torsion} \rightarrow 0
\]

- Singh proved: \(H^3_{l_2}(R) \) is \(\mathbb{Q} \)-space, so \(\iota \) iso!
Motivation:

- If $m = 2 = n - 1 = t$, ("the 2×3 case") then $h_2 = 2$, $\text{ara}(l_2) = 3$.
- $H^3_{l_2}(R_0) \neq 0$ (Hochster, -).
- Huneke, Katz, Marley: if $\phi: R_0 \to A \supset \mathbb{Q}$ with $\dim(\phi(R_0)) < 6$ then $H^3_{l_2}(A) = 0$.
- Does not follow from general vanishing theorems à la Grothendieck–Faltings–Huneke–Lyubeznik.

Back to R:

- there is an exact sequence

$$0 \to \mathbb{Z}\text{-torsion} \to H^3_{l_2}(R) \xrightarrow{\iota} H^3_{l_2}(R_0) \to \mathbb{Z}\text{-torsion} \to 0$$

- Singh proved: $H^3_{l_2}(R)$ is \mathbb{Q}-space, so ι iso!
Main results:

Theorem

\[R = \mathbb{Z}[X], \ l_t \text{ as above.} \]

1. \(H^k_{l_t}(R) \) is \(\mathbb{Z} \)-torsion-free for all \(t, k \).
2. If \(k \neq h_t \), then \(H^k_{l_t}(R) \) is a \(\mathbb{Q} \)-space, iso to \(H^k_{l_t}(R_0) \).
3. Consider the \(\mathbb{N} \)-grading on \(R \) with \([R]_0 = \mathbb{Z} \) and \(\deg x_i = 1 \). If \(2 \leq t \leq \min(m, n) \) and \(t < \max(m, n) \) then

\[
H^{mn-t^2+1}_{l_t}(\mathbb{Z}[X]) \cong E_{R_0}(\mathbb{Q})(mn) \quad \text{(this is a shift!)}
\]
As a consequence, one obtains:

Theorem

Let $a = t$-minors of $M \in A^{m \times n}$, A Noetherian, $1 \leq t \leq \min(m, n)$, $t < \max(m, n)$.

If $\dim A < mn$ then $H^{mn-t^2+1}_a(A) = 0$.
- **Frobenius functor** $F : (_ \rightarrow A') \otimes_A (_ \rightarrow)$
 A' left A-module as expected; the right action $a'a = a^p a'$.

- **F-module** is a direct limit

\[
M \rightarrow F(M) \rightarrow F(F(M)) \rightarrow \cdots \rightarrow M
\]

for some A-module M and some A-morphism $M \rightarrow F(M)$.

- **F-finite** if M is Noetherian.

- **$A\{f\}$-module** is a module over $A\{f\} = A\langle f \rangle / \{r^p f - fr\}$.

 - F-finite modules are finite length as F-modules. (Lyubeznik)
 - $H^r_x(\mathbb{k}[x]) \cong E_{\mathbb{k}[x]}(\mathbb{k})$ not injective as F-module (Ma)
Main technical results in char \(p > 0 \)

Theorem

\[R_p = (\mathbb{Z}/p\mathbb{Z} \subseteq \mathbb{k})[x]; \; m = (x), \; I \text{ graded.} \]

\(\forall k \geq 0, \) TFAE:

1. The \(D(R_p, \mathbb{k}) \)-module \(H^k_I(\mathcal{R}_p) \) has a composition factor with support \(\{m\} \).
2. The graded \(F \)-finite module \(H^k_I(\mathcal{R}_p) \) has a composition factor with support \(\{m\} \).
3. \(H^k_I(\mathcal{R}_p) \) has a graded \(F \)-module quotient with support \(\{m\} \).
4. The natural Frobenius action on \([H^*_{m, \dim(A)}(\mathcal{R}_p/I)]_0 \) is not nilpotent.

Theorem

\(H^r_x(\mathbb{k}[x]) \) injective as *graded* \(F \)-module.