1. Traves, Will. Book Review of J. Richter-Gebert's Perspectives in Projective Geometry. A Guided Tour Through Real and Complex Geometry. Amer. Math. Monthly, 122 (2015), 398--402. PDF
  2. Traves, Will. From Pascal's Theorem to d-Constructible Curves. Amer. Math. Monthly, 120 (2013), 901--915. PDF
  3. Traves, Will; Wakefield, Max. Derivation radical subspace arrangements. J. Pure Appl. Algebra 215 (2011), no. 6, 1492--1501. PDF
  4. Traves, Will. Differential operators on Grassmann varieties. Symmetry and spaces, 197--207, Progr. Math., 278, Birkhäuser Boston, Inc., Boston, MA, 2010. PDF
  5. Bashelor, Andrew; Ksir, Amy; Traves, Will. Enumerative algebraic geometry of conics. Amer. Math. Monthly 115 (2008), no. 8, 701--728. PDF
  6. Dalili, Kia; Faridi, Sara; Traves, Will. The reconstruction conjecture and edge ideals. Discrete Math. 308 (2008), no. 10, 2002--2010. PDF
  7. Joyner, David; Ksir, Amy; Traves, Will. Automorphism groups of generalized Reed-Solomon codes. Advances in coding theory and cryptography, 114--125, Ser. Coding Theory Cryptol., 3, World Sci. Publ., Hackensack, NJ, 2007. PDF
  8. Traves, William N. Invariant theory and differential operators. Gröbner bases in symbolic analysis, 245--265, Radon Ser. Comput. Appl. Math., 2, Walter de Gruyter, Berlin, 2007. PDF
  9. Traves, William N. Differential operators on orbifolds. J. Symbolic Comput. 41 (2006), no. 12, 1295--1308. PDF
  10. Saito, Mutsumi; Traves, William N. Finite generations of rings of differential operators of semigroup algebras. Proceedings of the 36th Symposium on Ring Theory and Representation Theory, 26--31, Symp. Ring Theory, Represent Theory Organ. Comm., Yamanashi, 2004.
  11. Saito, Mutsumi ; Traves, William N. Finite generation of rings of differential operators of semigroup algebras. J. Algebra 278 (2004), no. 1, 76--103. PDF
  12. Michael, T. S.; Traves, William N. Independence sequences of well-covered graphs: non-unimodality and the Roller-Coaster Conjecture. Graphs Combin. 19 (2003), no. 3, 403--411. PDF
  13. Traves, William N. Localization of the Hasse-Schmidt algebra. Canad. Math. Bull. 46 (2003), no. 2, 304--309. PDF
  14. Saito, Mutsumi; Traves, William N. The ring of differential operators for semigroup algebras—its finiteness. (Japanese) Theoretical effectivity and practical effectivity of Gröbner bases (Japanese) (Kyoto, 2002). Sūrikaisekikenkyūsho Kōkyūroku No. 1289 (2002), 64--80.
  15. Saito, Mutsumi; Traves, William N. Differential algebras on semigroup algebras. Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000), 207--226, Contemp. Math., 286, Amer. Math. Soc., Providence, RI, 2001. PDF
  16. Smith, Karen E.; Kahanpää, Lauri; Kekäläinen, Pekka; Traves, William. An invitation to algebraic geometry. Universitext. Springer-Verlag, New York, 2000. xii+155 pp. ISBN: 0-387-98980-3 [Since 2000, the book has been re-issued in a second printing and translated into Finnish and Persian.] Link to Amazon
  17. Traves, William N. Tight closure and differential simplicity. J. Algebra 228 (2000), no. 2, 457--476. PDF
  18. Traves, William N. Differential operators on monomial rings. J. Pure Appl. Algebra 136 (1999), no. 2, 183--197. PDF
  19. Traves, William N. Nakai's conjecture for varieties smoothed by normalization. Proc. Amer. Math. Soc. 127 (1999), no. 8, 2245--2248. PDF
  20. Traves, William Nathaniel. Differential operators and Nakai's conjecture. Thesis (Ph.D.)–University of Toronto (Canada). ProQuest LLC, Ann Arbor, MI, 1998. 112 pp. ISBN: 978-0612-35345-9 PDF
  21. Embrechts, Paul; Herzberg, Agnes M.; Kalbfleisch, Heidi K.; Traves, William N.; Whitla, J. Robertson. An introduction to wavelets with applications to Andrews' plots. J. Comput. Appl. Math. 64 (1995), no. 1-2, 41--56. PDF
  22. Herzberg, Agnes M.; Traves, William N. An optimal experimental design for the Haar regression model. Canad. J. Statist. 22 (1994), no. 3, 357--364.
  23. Traves, William N. A remarkable integer identity. Bull. Inst. Combin. Appl. 10 (1994), 17--22.
  24. Paul Craven, Paul; Traves, William N. A general-purpose hierarchical coding engine and its application to comparative analysis of statutes. Literary and Linguistic Computing 8, no. 1 (1993), 27—32.
  25. Craven, Paul; Traves, William N. A general-purpose hierarchical coding engine. Presented to the joint conference of Association for Computing in the Humanities/Association for Literary and Linguistic Computing, Oxford, April 1992. Lengthy abstract published in ALL/CACH 92 Proceedings (Oxford University Press) and electronically on the Internet. Pages 99—103.

Unpublished Notes

  1. Traves, Will. Installing LaTeX. Notes on how to install MikTex, Texmaker, Beamer and a pdf clipper on USNA-issued Windows machines. United States Naval Academy (2013). 9 pages. PDF
  2. Traves, Will. Advice on Writing Mathematics. Notes on how to write mathematics well. (2013). 4 pages. PDF
  3. Traves, Will. Elliptic Curves and Cryptography. Notes intended for use in SM362. United States Naval Academy (2013). 15 pages. PDF
  4. Traves, Will. The Network Interdiction Problem. Notes intended for use in SA405. United States Naval Academy (2012). 12 pages. PDF
  5. Traves, William N. Abstract Algebra: An Outline. Course notes for Math 301. University of Toronto Mathematics Department (1996). 15 pages. PDF