Plan

- Invariant Theory
 - Rings of invariants, R^G
 - Derksen’s algorithm

- Differential symmetries of R^G
 - Ideals in the Weyl algebra
 - The symmetry algebra and $D(R^G)$
 - Computing $D(R^G)$
Rings of Invariants

When a group G acts on $X = \text{Spec}(R)$, it is customary to consider the categorical quotient $X//G = \text{Spec}(R^G)$.

The ring R^G is the ring of invariants:

$$R^G = \{ r \in R : g \cdot r = r \text{ for all } g \in G \}.$$

Ex: If $G = \langle \sigma : \sigma^2 = \text{id} \rangle$ acts on $R = \mathbb{C}[x,y]$ via $\sigma \cdot x = -x$ and $\sigma \cdot y = -y$ then $R^G = \mathbb{C}[x^2, xy, y^2]$.
Example: binary forms

The geometry of (pairs of) points on \mathbb{P}^1 is controlled by the (deg 2) forms.

Let $X = \{ax^2 + bxy + cy^2\} = \text{Proj } \mathbb{C}[a,b,c]$.

$G = \text{SL}_2 \mathbb{C}$ acts on \mathbb{P}^1 and moves the roots of a form, so G acts on X:

- $g \cdot a = g_{1,1}^2 a + 2g_{1,1}g_{2,1} b + g_{2,1}^2 c$
- $g \cdot b = g_{1,1}g_{1,2} a + (g_{1,1}g_{2,2} + g_{1,2}g_{2,1}) b + g_{2,1}g_{2,2} c$
- $g \cdot c = g_{1,2}^2 a + 2g_{1,2}g_{2,2} b + g_{2,2}^2 c$

$R^G = \mathbb{C}[a,b,c]^{\text{SL}_2 \mathbb{C}} = \mathbb{C}[b^2-4ac]$
Properties of R^G

It is generally difficult to compute R^G explicitly (c.f. Takashi Wada’s talk).

Gordan and Hilbert showed that R^G is **finitely generated** when G is lin. reductive and Nagata gave a counterexample when G is not lin. reductive.
Computing invariants

Several methods:
(1) Gordan’s symbolic calculus (P. Olver)
(2) Cayley’s omega process
(3) Lie algebra methods (Sturmfels)
(4) Derksen’s algorithm

Harm Derksen

Gregor Kemper
Derksen’s Algorithm

(1) **Hilbert ideal** \(I = \text{ideal of } R \text{ gen by } R^G_{>0} \)

(2) To find \(I \), we first look at the map

\[
\psi : G \times X \rightarrow X \times X \quad \text{B} = \text{im}(\psi)
\]

\[
(g, x) \mapsto (x, g \cdot x) \quad \beta = \text{ideal}(B)
\]

Hilbert - Mumford Criterion:

\[
B \cap (X \times \{0\}) = V(I) \times \{0\}
\]

\[
\beta + (y_1, \ldots, y_n) = I + (y_1, \ldots, y_n)
\]

Compute the ideal \(\beta \) by **elimination** and set \(y \)'s to 0 to get gens for the Hilbert ideal.

(3) The gens of \(I \) may not be invariants but we can average them over the group action to get invariants that generate \(I \) and \(R^G \).
Example: binary forms

To describe the map $\psi : G \times X \to X \times X$
we need to represent $G = \text{SL}_2 \mathbb{C}$ as a variety:

$G = V(g_{1,1}g_{2,2} - g_{2,1}g_{1,2} - 1) \subset \mathbb{C}[g_{1,1}, g_{1,2}, g_{2,1}, g_{2,2}]$.
Plan

• Invariant Theory
 • Rings of invariants, R^G
 • Derksen’s algorithm

• Differential symmetries of R^G
 • Ideals in the Weyl algebra
 • The symmetry algebra and $D(R^G)$
 • Computing $D(R^G)$
Differential symmetries

One way to study any ring of functions is to understand the ring as the solutions to a system of differential equations.

Cayley developed a system of diff. eqs that characterize the invariants of forms (the G=SL\(_2\)\(\mathbb{C}\) case).

Arthur Cayley
The Lie algebra method works with $\text{GL}_2\mathbb{C}$ rather than $\text{SL}_2\mathbb{C}$. There is a close connection between the invariants of these two groups.

A function f is said to be an “invariant of index γ” if $g \cdot f = (\det g)^\gamma f$ for all $g \in \text{GL}_2\mathbb{C}$.

Theorem: For binary forms, \(\text{GL}_2\mathbb{C} \)-invariants of index $\gamma = \text{homog.} \ \text{SL}_2\mathbb{C} \)-invariants of degree $2\gamma/d$.
Example: degree 2 forms

Degree 2 form: \(F(x,y) = ax^2 + bxy + cy^2 \).

\[

g \cdot a = g_{1,1}^2 a + 2g_{1,1}g_{2,1} b + g_{2,1}^2 c \\
g \cdot b = g_{1,1}g_{1,2} a + (g_{1,1}g_{2,2} + g_{1,2}g_{2,1}) b + g_{2,1}g_{2,2} c \\
g \cdot c = g_{1,2}^2 a + 2g_{1,2}g_{2,2} b + g_{2,2}^2 c \\
\]

If \(g = \begin{bmatrix} \lambda & 0 \\ 0 & \tau \end{bmatrix} \): \(g \cdot a = \lambda^2 a, \quad g \cdot b = \lambda \tau b, \quad g \cdot c = \tau^2 c \)

Now if \(f(a,b,c) \) has index \(\gamma \) then

\(f(\lambda^2 a, \lambda \tau b, \tau^2 c) = (\lambda \tau)^\gamma f(a,b,c) \). This forces

\[
(2a \partial_a + 1b \partial_b + 0c \partial_c)f = \gamma f \\
(0a \partial_a + 1b \partial_b + 2c \partial_c)f = \gamma f
\]
Example continued

\[(2a\partial_a + 1b\partial_b + 0c\partial_c)f = \gamma f\]

\[(0a\partial_a + 1b\partial_b + 2c\partial_c)f = \gamma f\]

There are two other types of matrices that gen. GL\(_2\mathbb{C}\):

\[
\begin{bmatrix}
1 & * \\
0 & 1
\end{bmatrix}
gives the condition \((1a\partial_b + 2b\partial_c)f = 0\) and

\[
\begin{bmatrix}
1 & 0 \\
* & 1
\end{bmatrix}
gives the condition \((2b\partial_a + 1c\partial_b)f = 0\).
Cayley’s Differential System

\[(2a\partial_a + 1b\partial_b + 0c\partial_c)f = \gamma f\]
\[(0a\partial_a + 1b\partial_b + 2c\partial_c)f = \gamma f\]
\[(1a\partial_b + 2b\partial_c)f = 0\]
\[(2b\partial_a + 1c\partial_b)f = 0\]

\[ax^2 + bxy + cy^2 \quad \longrightarrow \quad a_2x^2 + a_1xy + a_0y^2\]

\[\longrightarrow \quad \sum a_i x^i y^{d-i}\]
Cayley’s Differential System

\[(\sum ia_i \partial_i - \gamma)f = 0\]

\[(\sum (d - 2i)a_i \partial_i)f = 0\]

\[(\sum (d - i)a_{i+1} \partial_i)f = 0\]

\[(\sum ia_{i-1} \partial_i)f = 0\]

\[ax^2 + bxy + cy^2 \longrightarrow a_2x^2 + a_1xy + a_0y^2\]

\[\longrightarrow \sum a_ix^iy^{d-i}\]
Ideals in the Weyl algebra

We can make Cayley’s system into an algebraic object using the Weyl algebra.

Weyl algebra: $W = \mathbb{C}[x_1, \ldots, x_n]<\partial_1, \ldots, \partial_n>$

Systems of linear PDEs \iff left ideals in W

- f satisfies $\Delta_1 f = \Delta_2 f = \ldots = 0$ \iff f is annihilated by the left ideal $W(\Delta_1, \Delta_2, \ldots)$

Solutions to system of DEs correspond to elements of $\text{Hom}_W(W/J, \mathbb{C}[x_1, \ldots, x_n])$
Cayley’s Differential System

\[(\sum ia_i \partial_i - \gamma)f = 0 \]

\[(\sum (d - 2i)a_i \partial_i)f = 0 \]

\[(\sum (d - i)a_{i+1} \partial_i)f = 0 \]

\[(\sum ia_{i-1} \partial_i)f = 0 \]

\(J_d \) : characterizes invariants

\(J_d(\gamma) \) : invariants of order \(\gamma \)
M. Saito and I used the symmetry algebra to study systems of hypergeometric DEs.

\[
S(W/J) = \left\{ \Delta \in W : J\Delta \subseteq J \right\}
\]

A: matrix, \(\beta \): complex vector \(\rightarrow H_A(\beta) \)
\(\Delta \in S(W/J_A) \)

Then \(f \) is a soln to \(H_A(\beta) \) \(\iff \)
\(\Delta \cdot f \) is a soln to \(H_A(\beta') \) for some \(\beta' \).
Symmetry algebra

\[S(W/J) = \left\{ \Delta \in W : \Delta J \subseteq J \right\} J \]

Theorem: \[S(W/J_d) = \left\{ \Delta \in W : \Delta \cdot R^G \subseteq R^G \right\} \subseteq D(R^G) \]

Equality holds when \(J_d = \text{Ann}_W(R^G) \).

Question: How can we compute \(S(W/J_d) \)?

This looks hard so we pass to the study of \(D(R^G) \).
Differential Operators

If R is a k-algebra then $D(R) \subset \text{End}_k R$.

In general $D(R)$ is very difficult to compute and may not be finitely generated.

One nice example: $D(C[x_1, \ldots, x_n]) = W$.

G acts on $C[x_1, \ldots, x_n]$ via the matrix M and this induces an action on the ∂_i's via the matrix $(M^{-1})^T$.

So it makes sense to ask for $D(R)^G = W^G$, the ring of invariant differential operators.
Unfortunately, $D(R)^G$ is not equal to $D(R^G)$.

$\pi: R^G \to R$ induces $\pi^*: D(R)^G \to D(R^G)$ by restriction

$$\theta \in D(R)^G \quad \text{Reynolds}$$

Theorem: if $J_d = \text{Ann}_WR^G$ then

$\text{im}(\pi^*) \subset S(W/J_d) \subset D(R^G)$
Failure of surjectivity

We’ve got a map $\pi^*: D(R)^G \to D(R^G)$.

Have $\text{Im}(\pi^*) \subset S(D(R)/J) \subset D(R^G)$.

Musson and Van den Bergh showed that the map π^* may not be surjective ($G = \text{torus}$).

Ian Musson

M. Van den Bergh
Surjective when it counts

Schwarz showed that the map π^* is surjective in many cases of interest. In fact, he showed that the Levasseur-Stafford Alternative holds for $\text{SL}_2\mathbb{C}$ representations:

Either (1) R^G is regular or
(2) the map π^* is graded surjective

In most cases R^G is not regular and so π^* is (graded) surjective. Then: $\text{im}(\pi^*) = S(W/J_d) = D(R^G)$.

Gerry Schwarz
Graded Surjectivity

The Weyl algebra $D(R) = W$ is filtered by order (degree in the ∂'s). The associated graded ring is just a polynomial ring in $2n$ variables.

Saying that the map $\pi^*: D(R)^G \rightarrow D(R^G)$ is graded surjective means that the induced map $[\text{gr}D(R)^G] \rightarrow \text{gr}D(R^G)$ is surjective.

So to produce generators of $\text{gr}D(R^G)$ (and hence $D(R^G)$) it is enough to get generators of $\text{gr}D(R)^G$.
Computing $D(R^G)$

Since $\text{gr}D(R)^G = [\text{gr}D(R)]^G$ is a poly. ring, we can use Derksen’s algorithm to compute $[\text{gr}D(R)]^G$. These generators lift immediately to generators of $D(R^G)$.

Ex. $D(C[a_0,a_1,a_2]^{SL_2C}) = C[a_1^2-4a_0a_2, a_0\partial_0+a_1\partial_1+a_2\partial_2, \partial_1^2-\partial_0\partial_2]$

Bad news: $d>2$ seems hard!

Ex. $D(C[x,y]^{Z/2Z}) = C[x^2,xy,y^2,x\partial_x,x\partial_y,y\partial_x, y\partial_y, \partial_x^2, \partial_x\partial_y, \partial_y^2]$
Plan

• Invariant Theory
 • Rings of invariants, R^G
 • Derksen’s algorithm

• Differential symmetries of R^G
 • Ideals in the Weyl algebra
 • The symmetry algebra and $D(R^G)$
 • Computing $D(R^G)$