Higher Derivations and Invariant Theory

William N. Traves
U.S. Naval Academy

INGO 2003
Thank You.
Outline

1) Invariant Theory and the Steenrod Algebra
2) Rings of Differential Operators
3) Higher Derivations
4) Jet Spaces and Applications
Invariant Theory

- Invariant theory of 19th and 20th centuries focused on characteristic zero and nonmodular cases.

- Characteristic p>0 largely an afterthought – as in commutative algebra more generally.

- But prime characteristic methods are increasingly important.
 - Applications of commutative algebra to combinatorics.
 - New tool: Frobenius map.
 - Algebraic theory of tight closure
 - mimics and extends results from analysis
 - Invariant theory: Steenrod Algebra.
The Steenrod Algebra

My thanks to Reg Wood for several nice lectures on the Steenrod algebra.

Like Reg, I will consider the Steenrod algebra from an algebraic point of view (as in Larry Smith’s book).

Fix some notation:

- $k = \text{GF}(q) = \mathbb{F}_q$
- $q = p^s$
- $R = k[x_1, \ldots, x_n]$
- G: subgroup of $\text{GL}(n,k)$ acting linearly on R.
Steenrod Algebra from ϕ

$R = k[x_1, \ldots, x_n]$

$(= k[x,y] \text{ or } k[x,y,z])$

$\varphi: R \rightarrow R[[t]]$

$x_i \mapsto x_i + x_i^q t$

$\varphi(xy) = (x + x^q t)(y + y^q t) = xy + (xy^q + x^q y) t + x^q y^q t^2$

$Q_i : R \rightarrow R$ are the i^{th} Steenrod operators obtained by applying φ and extracting the coefficient of t^i

$Q_1(xy) = xy^q + x^q y$

$A := \text{Steenrod Algebra} – \text{the } k\text{-algebra generated by the } Q_i.$
Properties of the Operators

Cartan Formula: \[Q_k(fg) = \sum_{i+j=k} Q_i(f)Q_j(g) \]

Instability: \[Q_k(f_d) = \begin{cases} f^q & \text{if } k = d \\ 0 & \text{if } k > d \end{cases} \]

Example: \[Q_1(xy) = Q_0(x)Q_1(y) + Q_1(x)Q_0(y) \]
\[= xy^q + x^qy \]

None of the operators are zero, though they are all nilpotent.
The Q_i Commute with G

The Steenrod operators Q_i commute with the group action (linear change of variables).

Check this directly. The key fact is that the matrix representing the action of $g \in G$ on $\{x_1, \ldots, x_n\}$ is the same matrix that represents the action of g on $\{x_1^q, \ldots, x_n^q\}$ (because $a^q = a$ in \mathbb{F}_q).

The Q_i raise degree and preserve invariants so they create new (higher degree) invariants from old.
Q_i and Frobenius

The Q_i also satisfy an interesting relation with regard to the Frobenius map:

\[Q_i(r^{p^e}) = \begin{cases}
(Q_{i/p^e}(r))^{p^e} & \text{if } i, \\
0 & \text{otherwise.}
\end{cases} \]

\[r^{p^e} + Q_1(r^{p^e})t + Q_2(r^{p^e})t^2 + \cdots = \varphi(r^{p^e}) \]
\[= (\varphi(r))^{p^e} \]
\[= (r + Q_1(r)t + Q_2(r)t^2 + \cdots)^{p^e} \]
\[= r^{p^e} + Q_1(r)^{p^e} t^{p^e} + Q_2(r)^{p^e} t^{2p^e} + \cdots \]

Equating coefficients of t gives the result.
\(R^{p^e} \)-linearity of the \(Q_i \)

The \(Q_i \) also satisfy an interesting relation with regard to the Frobenius map:

\[
Q_i (r^{p^e}) = \begin{cases}
(Q_{i/p^e}(r))^{p^e} & p^e \mid i, \\
0 & \text{otherwise}.
\end{cases}
\]

Now for \(p^e > i \) we have:

\[
Q_i (r^{p^e}f) = \sum_{m+n=i} Q_m (r^{p^e}) Q_n (f) \\
= Q_0 (r^{p^e}) Q_i (f) \\
= r^{p^e} Q_i (f)
\]
Complete set of invariants – the Adem relations – is known.

These are encoded by the Bullett-Macdonald identity.

Much is also known about the structure of R^G as a module over the Steenrod Algebra

- Invariant ideals in R^G – e.g. radical of a stable ideal is stable
- For example, when $G = \text{GL}(n,k)$, there are only finitely many stable prime ideals in R^G and these are generated by intervals in the Dixon invariants

The Steenrod algebra can also be interpreted as a subring of the ring of differential operators on R^G.
Rings of Differential Operators

Grothendieck: defined differential operators in an abstract way – subring of \(\text{End}(R) \) satisfying certain iterated commutator relations.

Case \(R = \mathbb{C}[x_1, \ldots, x_n] \):

\[
D(R) = \mathbb{C}[x_1, \ldots, x_n, d_1, \ldots, d_n]
\]

generators satisfy the product rule:

\[
[d_i, x_j] = d_i x_j - x_j d_i = \delta_{ij}
\]

In this case, \(D(R) \) is the **Weyl Algebra** (see Coutinho’s nice book).
Problems in Characteristic $p>0$

Julia Hartmann mentioned some of the problems with differential operators in prime characteristic:

$$d_1(x^p) = p x^{p-1} = 0$$

Even worse: $d_1^p = 0$

Introduce the divided powers operators:

$$d_i^k = \frac{1}{k!} \frac{\partial^k}{\partial x_i^k}$$

Then set $D(k[x_1, ..., x_n]) = k[x_i, d_i^m]_{m>0}$
Differential Operators on R^G

We are in the case where G is reductive so think of R^G as S/I.

\[
D(R^G) = D(S/I) = \left\{ \theta \in D(S) : \theta(I) \subseteq I \right\}/I \cdot D(S).
\]

Remark 1: With this definition, it is not clear that $D(R^G)$ enjoys any nice properties.

Remark 2: We could also define $D(R_G)$ in this way.
Theorem (K.E. Smith): In characteristic $p > 0$, the ring of differential operators on a ring R is just the algebra of maps $R \to R$ that are R^p-linear for some power p^e.

Cor: The Steenrod algebra is a subalgebra of $D(R^G)$.

In fact, we can write the Steenrod operators as

$$Q_i = \sum_{|a|=i} x^{q_a} d^a$$

$$= \sum_{a_1 + \cdots + a_n = i} x_1^{q_{a_1}} \cdots x_n^{q_{a_n}} \frac{1}{a_1! \cdots a_n!} \frac{\partial^i}{\partial x_1^{a_1} \cdots \partial x_n^{a_n}}$$
Applications

Rings of differential operators find application in a wide variety of mathematical fields:

- Model quantum mechanics
- Used to study symplectic manifolds
- Local cohomology modules are finite over $D(R)$
- Close – but mysterious – connections to tight closure
The group G acts on R and this action extends to operators:

$$g \in G, \ d \in D(R) \implies (gd)(r) = gd(g^{-1}r)$$

Note that if $gd = d$ then d defines an operator on R^G:

$$g \in G, \ r \in R^G \implies gd(r) = gd(g^{-1}r) = (gd)(r) = d(r)$$

Natural map: $D(R)^G \to D(R^G)$
Questions about $D(R^G)$

- When is $D(R^G)$ finitely generated, or left or right Noetherian?
- When is $D(R^G)$ a simple ring?
- When is R^G a simple module over $D(R^G)$?
- What about the same questions for $GrD(R^G)$?
- When is the map $D(R)^G \rightarrow D(R^G)$ surjective?
Answers: G finite

Characteristic zero.

Kantor and Levasseur: $D(R^G)$ is

- finitely generated,

- left and right Noetherian.

- moreover: $D(R)^G \to D(R^G)$ is a surjection whenever G contains no pseudoreflections.
Answers: Classical Groups

Schwarz, Levasseur, Van den Bergh, Musson, Stafford and many others have studied the classical groups acting on a polynomial ring in characteristic zero.

In most cases $D(R^G)$ – and even $GrD(R^G)$ – are finitely generated and left and right Noetherian. In all these cases, the map $D(R)^G \rightarrow D(R^G)$ is surjective. For example, this holds for tori, $O(n)$, etc.

However, Schwarz has shown that there are representations of $Sl_2(C)$ for which the map $D(R)^G \rightarrow D(R^G)$ is not surjective.
Simplicity

If $D(S)$ is simple then the ring S is simple as a $D(S)$-module.

Proof:
- If I is a nonzero stable ideal in S then S/I is a $D(S)$-module.
- $\text{Ann}_{D(S)}(S/I)$ is a two-sided ideal in $D(S)$ that contains I.
- So $\text{Ann}_{D(S)}(S/I) = D(S)$.
- Thus $S/I = 1(S/I) = 0$ and $I = S$.
- So S contains no proper $D(S)$-modules.

General feeling: characteristic p is harder than char. 0

Theorem (K.E. Smith and Van den Bergh): In prime characteristic $D(R^G)$ is always a simple ring.
Higher Derivations

The Steenrod operations are an example of a higher derivation, collections of operators that generalize the behavior of derivations on commutative rings.

Let \(R = k[x_1, \ldots, x_n]/I \)

Definition: A higher derivation from \(R \) to \(R \) is an infinite collection of \(k \)-algebra maps \(\{D_0 = \text{id}_R, D_1, D_2, \ldots \} \) from \(R \) to \(R \) that patch together using the product rule

\[
D_k (fg) = \sum_{i+j=k} D_i(f)D_j(g)
\]
Examples of Higher Derivations

(1) The Steenrod operators \(\{Q_0, Q_1, \ldots \} \) determine a higher derivation from \(R=k[x_1, \ldots, x_n] \) to itself.

(2) In characteristic zero, any derivation \(d \) on \(R \) determines a higher derivation

\[
D_k = \frac{1}{k!} d^k
\]

For instance, the derivation \(d/dx \) on \(k[x] \) induces a higher derivation on the polynomial ring.
Exponential Maps

Each higher derivation \(\{D_0, D_1, D_2, \ldots \} \) from \(R \) to \(R \) gives rise to a map of \(k \)-algebras

\[
\varphi: R \to R[[t]] \\
r \mapsto D_0(r) + D_1(r)t + D_2(r)t^2 + \ldots
\]

The product rule guarantees that this map is a ring map.

There is no instability result for higher derivations, but each \(D_i \) is \(R^{pe} \)-linear for some power \(pe \). So each higher derivation is a differential operator.
The Higher Derivation Algebra

The higher derivation algebra $HDer(R)$ on a ring R is just the R-algebra generated by the components of all higher derivations on R.

Larry Smith asked whether $A = HDer$.

$$R^G \otimes A \subseteq HDer(R^G) \subseteq D(R^G)$$
Case: R^G a Polynomial Algebra

Here $\text{HDer}(R^G) = D(R^G)$ but $R^G A \neq \text{Hder}(R^G)$.

Equality follows from direct calculation. In fact $\text{HDer}(S) = D(S)$ whenever S is smooth over k.

Inequality now follows because R^G has A-stable ideals (for example, the augmentation ideal), but is $D(R^G)$-simple.
Nakai’s Conjecture

Conjecture: S is smooth over k if and only if $\text{HDer}(S) = D(S)$.

Ishibashi proved Nakai’s conjecture for R^G, G a finite group.

When R^G is singular, there is a nice theory of $\text{HDer}(R^G)$-stable ideals, similar to that developed by Smith for A-stable ideals. But it remains open whether $\text{HDer}(R^G) = R^G A$ in the singular case.
Derivations are Representable

\[\text{Higher derivations } (\mathcal{S} \to \mathfrak{K}) \cong \text{Hom}_{k\text{-alg}}(\text{HS}_{S/k}, \mathfrak{K}) \]

\[\{D_0, D_1, \ldots\} \mapsto \varphi : \forall i \quad D_i = \varphi \circ d_i \]
Aecs

Suppose $S = k[x_1, \ldots, x_n]/I$ and $D = \{D_0, D_1, \ldots\}$ is a higher derivation from S to k.

Then we get a ring map $\varphi: S \to k[[t]]$ given by

$$\varphi(s) = D_0(s) + D_1(s)t + D_2(s)t^2 + \ldots.$$

This map is determined by the images $\varphi(x_i)$.
These need to satisfy $f(\varphi(x_1), \ldots, \varphi(x_n)) = 0$ for each f in the defining ideal I.

Higher derivations $(S \to k) \cong \text{Hom}_{k-\text{alg}}(S, k[[t]])$
An Adjointness Result

Theorem: \(\text{Hom}_{k\text{-alg}}(HS_{S/k}, k) \cong \text{Hom}_{k\text{-alg}}(S, k[[t]]) \)

Taking Spec’s:

\[
[\text{maps Spec}(k[[t]]) \to \text{Spec}(S)] \cong [\text{maps Spec}(k) \to \text{Spec}(HS_{S/k})] \\
\cong \text{Spec}(HS_{S/k})
\]

So Spec(HS_{S/k}) parameterizes arcs on Spec(S).
The Jet Space

The Jet Space $J(S) = \text{Spec}(HS_{S/k})$ parameterizes arcs on $\text{Spec}(S)$.

We have a map $pr : J(S) \to \text{Spec}(S)$ that sends each arc to the point it passes through.

Each arc γ corresponds to a map $\varphi : S = R/I \to k[[t]]$.

The point $(\varphi(x_1) \mod (t), ..., \varphi(x_n) \mod (t))$ satisfies each equation in I, so it lies on $\text{Spec}(S)$. This is the image of the arc γ under the map pr.
Applications of Jet Spaces

- Characterization of singularities
 - Multiplier Ideals
 - Nash Conjecture
- Motivic Integration
Nash’s Conjecture

Nash conjectured a relation between the jet space of an algebraic variety X and its resolution of singularities.
Minimal Resolution

X: surface with isolated singularity at the origin

Y: minimal model for X (blowup and normalize)
The Nash Map (1)

Each arc centered over 0 gives a map Spec(k[[t]]) \rightarrow X. The closed point goes to 0, but the generic point lifts to Y. The VCP ensures that we can complete this map to a map of schemes.

In fact, each arc gets sent into a unique exceptional divisor.

\(pr^{-1}(0) \subseteq J(X) \rightarrow X \)
In fact, each component of the fiber of arcs through 0 gets sent to a unique exceptional divisor, giving rise to an injective map of sets
\{components\ of\ arc\ space\ through\ 0\} \rightarrow \{exceptional\ divisors\ appearing\ in\ minimal\ resolution\ of\ singularities\}

This map is known as the Nash map. Nash conjectured that this map is a bijection.
Recent Work

The Nash conjecture has motivated research in resolution of singularities (esp. in prime characteristic) for some time [Spivakovsky, Lejeune-Jalabert].

The conjecture is true for toric varieties, surfaces and threefolds.

However, Kollar and Ishii recently gave a counterexample.
Motivic Integration

Kontsevich developed motivic integration to prove a conjecture of Batyrev: *Two birationally equivalent Calabi-Yau manifolds have the same Hodge numbers* \((h_{p,q} = \dim H^p(\Omega^q, X))\).

Get a map that sends \(X\) to \(\sum h_{p,q} u^p v^q \in \mathbb{Z}[u,v]\).

Kontsevich shows this map factors through another map \(X \to M\) \((M\) is the motivic ring \([BP]\)).
The Motivic Ring

The motivic ring M consists of \mathbb{Z}-linear combinations of varieties plus some formal inverses. Sums correspond to disjoint unions and products correspond to direct products.

Kontsevich views the map $X \to M$ as an integration on the arc space of X. He gets a change of variables formula that he uses to show that the integrals of X and Y (birational CY manifolds) are equal. Then their Hodge numbers are equal too.
Applications: Motivic Integration

- zeta functions
- p-adic integration
- string theory
- mirror symmetry
- multiplier ideals (tight closure): singularity theory
 - Ein, Lazarsfeld and Mustata
Thank you once again.

Enjoy your lunch!