Counting Hyperplane Arrangements

Thomas Paul, Will Traves (Queen's '93) and Max Wakefield

Department of Mathematics
United States Naval Academy

Queen’s University, Kingston
26 JULY 2012
1 Enumerative Geometry
 • introduction and basic methods

2 Hyperplane Arrangements
 • intersection lattice
 • moduli spaces

3 Computations with Cohomology
 • crucial info about cohomology
 • example: 4-pencil
 • example: braid arrangement
 • example: a pencil in higher dimension
Enumerative Geometry

How many lines pass through 2 points in the plane?

How many planes pass through 3 points in 3-space?

Note: answer depends on position of the points.
Enumerative Geometry

How many lines pass through 2 points in the plane?

How many planes pass through 3 points in 3-space?

Note: answer depends on position of the points.
How many points lie on the intersection of two distinct lines in \mathbb{R}^2?

In \mathbb{R}^2 the answer depends on the position of the lines.

Work in projective space $\mathbb{P}^2 := \left\{ \text{nonzero points in } \mathbb{R}^3 \right\} / (x, y, z) \sim (\lambda x, \lambda y, \lambda z)$ for nonzero λ.

Write $[x : y : z]$ for the equiv. class of nonzero (x, y, z).

Note that $\mathbb{P}^2 = \left\{ [x : y : 1] : (x, y) \in \mathbb{R}^2 \right\} \cup \left\{ [x : y : 0] : [x : y] \in \mathbb{P}^1 \right\}$.

A more complicated context gives a simpler answer.
Hypersurfaces

Polynomials in x, y, z no longer give well-defined functions on \mathbb{P}^2:

$$P(x, y, z) \neq P(\lambda x, \lambda y, \lambda z).$$

But the zero set of a homogeneous polynomial makes sense:

$$P(\lambda x, \lambda y, \lambda z) = \lambda^d P(x, y, z)$$

if all terms in P have degree d.

Hypersurface: the zero set of a nonconstant homogeneous polynomial.

Theorem (Bézout)

The intersection of n hypersurfaces of degrees d_1, d_2, \ldots, d_n in \mathbb{P}^n consists of $d_1 d_2 \cdots d_n$ points, counted appropriately.

Need to work over \mathbb{C}. Need multiplicity.
The basic counting method

Find a suitable parameter space for your objects.

Show that the geometric constraints correspond to the intersection of hypersurfaces, $H_1 \cap \cdots \cap H_n$.

Find the degrees of the hypersurfaces.

Obtain the count by Bézout’s Theorem.
An arrangement \mathcal{A} is a finite collection of hyperplanes in \mathbb{P}^n.

A line arrangement
$\mathcal{A} = \{x = 0, y = 0, x + y - z = 0\}$

The braid arrangement
$\mathcal{A}_n = \{x_i = x_j : 0 \leq i < j \leq n\}$
The intersection lattice \(\mathcal{L}(\mathcal{A}) \).

Poset: elements = intersections of hyperplanes in \(\mathcal{A} \).
\(U < V \iff U \) contains \(V \).

Properties of \(\mathcal{A} \) that depend only on the intersection lattice are said to be **combinatorial**.
Let \mathcal{A} be a labeled arrangement with intersection lattice $\mathcal{L}(\mathcal{A})$.

$$M = \{ \text{arrangements } \mathcal{B} : \mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \}.$$

$$\mathcal{A} = \{ H_1 = 0, \ldots, H_k = 0 \} \leftrightarrow (\nabla H_1, \ldots, \nabla H_k) \in (\mathbb{P}^n)^k.$$

$$M(\mathcal{L}(\mathcal{A})) = \overline{M} \text{ in } (\mathbb{P}^n)^k.$$

We’ll deal with unlabeled arrangements later: quotient by $\text{Sym}(k)$.
\[\mathcal{A} = \{ H_1 = 0, \ldots, H_k = 0 \} \] through \(P \in \mathbb{P}^n \) when

\[H_1(P)H_2(P) \cdots H_k(P) = 0. \]

\[\dim \mathbf{M}(\mathcal{L}(\mathcal{A})) = \min \text{ number of point-conditions required to determine a finite number of arrangements through all the points} \]
An open question

Pappus arrangement

dimension appears to be 9 but is actually 10

presence of syzygy affects dimension

How do we “see” a syzygy in the intersection lattice?

Open Question

The dimension of $\mathbf{M}(\mathcal{L}(\mathcal{A}))$ is combinatorial. Find a way to determine the dimension of $\mathbf{M}(\mathcal{L}(\mathcal{A}))$ using only the intersection lattice.
Generic arrangements

Generic in \mathbb{P}^n: at most n hyperplanes through any point

Theorem

The dimension of $\mathbf{M}(\mathcal{L}(A))$ for A generic with k hyperplanes in \mathbb{P}^n is nk and the number of such arrangements through nk points is

$$\frac{n^k}{k!} = \frac{(nk)!}{(n!)^k(k!)}. $$

Paul, Traves & Wakefield (USNA)

Counting Arrangements

Queen's, 26 JUL 2012

12 / 32
How many 3-generic line arrangements pass through p points and are tangent to ℓ lines ($p + \ell = 6$)?

<table>
<thead>
<tr>
<th>Points p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines ℓ</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Count $N(p, \ell)$</td>
<td>15</td>
<td>30</td>
<td>48</td>
<td>57</td>
<td>48</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

Why is the table symmetric?

Fulton-Kleiman-MacPherson: can count 3-generic arrangements through p points and tangent to $\ell = 6 - p$ smooth curves of various degrees using characteristic numbers.
A pencil of lines is a set of lines meeting in a common point.

Theorem

If \mathcal{A} is a pencil of k lines in \mathbb{P}^2 then $\dim \mathbf{M}(\mathcal{L}(\mathcal{A})) = k + 2$ and the characteristic numbers are as follows:

<table>
<thead>
<tr>
<th>Points p</th>
<th>$k + 2$</th>
<th>$k + 1$</th>
<th>k</th>
<th>$k - 1$</th>
<th>\ldots</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines ℓ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>\ldots</td>
<td>$k + 2$</td>
</tr>
<tr>
<td>Characteristic $N(p, \ell)$</td>
<td>$3\left(\frac{k + 2}{4}\right)$</td>
<td>$\left(\frac{k + 1}{2}\right)$</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
</tbody>
</table>
Cohomology

Goal: count arrangements without precise location of constraint points.

Move points \rightarrow arrangements vary \rightarrow number remains constant

Codim-d constraint \rightarrow degree-d class \in (graded) cohomology ring.

Deformed constraints have the same class.
Cohomology ring structure

The structure of the cohomology ring depends on the structure of the underlying moduli space X. The cells of a cell-decomposition of X determine a \mathbb{Z}-module basis for $H^*(X, \mathbb{Z})$.

$$[V \cap W] = [V] \ast [W] \text{ if } V \text{ and } W \text{ intersect transversely.}$$

$$[V \cup W] = [V] + [W].$$
Deformation

Deformed constraints have the same class.
Example: Line $ax + by + cz = 0$ in \mathbb{P}^2 represented by $[a : b : c]$.

Line through $P[1 : 0 : 0] \iff a = 0$. Line through $Q[0 : 1 : 0] \iff b = 0$.

Deformation $F(t): a(1 - t) + bt = 0$ so $[P\text{-pencil}] = [Q\text{-pencil}]$.

![Diagram](image-url)
Example: \mathbb{P}^n and Bézout’s Theorem

\mathbb{P}^n has one cell in each dimension $d = 0, \ldots, n$

$H^*(\mathbb{P}^n, \mathbb{Z}) = \mathbb{Z}c_0 \oplus \mathbb{Z}c_1 \oplus \cdots \oplus \mathbb{Z}c_n$ w/ c_d codim-d class

$c_0 = [\mathbb{P}^n] =$ Identity element

$c_1 =$ [hyperplane]

$c_2 = c_2 =$ [codim-2 plane]

$c^n = c_n =$ [point]

$H^*(\mathbb{P}^n, \mathbb{Z}) = \mathbb{Z}[h]/(h^{n+1})$ w/ $h = c_1 =$ [hyperplane].

Deformation: [degree d hypersurface] = dh.

Bézout: $[d_1\text{-hyp} \cap d_2\text{-hyp} \cap \cdots \cap d_n\text{-hyp}] = (d_1h) \cdots (d_nh) = d_1 \cdots d_nh^n$.
Example: \((\mathbb{P}^n)^k\) and 3-pencils

Kunneth formula: \(H^*((\mathbb{P}^n)^k, \mathbb{Z}) = \mathbb{Z}[h_1, h_2, \ldots, h_k]/(h_1^{n+1}, \ldots, h_k^{n+1})\).

Question

How many 3-pencils in \(\mathbb{P}^2\) go through 5 points?

\[\text{M}(\mathcal{L}(\mathcal{A})) \subset (\mathbb{P}^2)^3\] and \(\mathcal{A}\) goes through \(P\) \(\iff\) \(H_1(P)H_2(P)H_3(P) = 0\).

\[[H_1(P)H_2(P)H_3(P) = 0] = h_1 + h_2 + h_3\]

[3 lines lie in a pencil] = [\(\det(\nabla H_1, \nabla H_2, \nabla H_3) = 0\)] = \(h_1 + h_2 + h_3\).

So \((h_1 + h_2 + h_3)^5(h_1 + h_2 + h_3) = \binom{6}{2,2,2}(h_1 h_2 h_3)^2\)

so answer is \(\binom{6}{2,2,2}/3! = 15\).
Determine a method to find the cohomology class of $M(L(A))$ using only the intersection lattice $L(A)$.
Example: the 4-pencil \[1\]

Question

How many 4-pencils in \mathbb{P}^2 pass through 6 points?

\[
\text{det}[123] = \text{det}[124] = \text{det}[134] = \text{det}[234] = 0 \text{ and 6 point conditions}
\]

10 conditions but $M(\mathcal{L}(A)) \subset (\mathbb{P}^2)^4$, of dim 8 \Rightarrow ANS = 0.
6 point conditions and $\det[123]=0$ and $\det[124]=0$ give

$$(h_1 + h_2 + h_3)(h_1 + h_2 + h_4)(h_1 + h_2 + h_3 + h_4)^6 = 1440(h_1 h_2 h_3 h_4)^2$$

So ANS = $1440/4! = 60$
6 point conditions and \(\det[123]=0 \) and \(\det[124]=0 \) give

\[
(h_1 + h_2 + h_3)(h_1 + h_2 + h_4)(h_1 + h_2 + h_3 + h_4)^6 = 1440(h_1 h_2 h_3 h_4)^2
\]

So ANS = \(1440/4! = 60 \) ??
Example: 4-pencil [3] - Adding parameters

Add a parameter to account for the pencil’s vertex

\[\mathbf{M}(\mathcal{L}(\mathcal{A}))' = \{(P, H_1, H_2, H_3, H_4) \in \mathbb{P}^2 \times (\mathbb{P}^2)^4 : P \in H_1 \cap H_2 \cap H_3 \cap H_4 \} \]

\[[P \in H_1] = [H_1(P) = 0] = h_p + h_1. \]

\[(h_p + h_1)(h_p+h_2)(h_p+h_3)(h_p+h_4)(h_1+h_2+h_3+h_4)^6 = 1080(h_p h_1 h_2 h_3 h_4)^2 \]

ANS = 1080/4! = 45.
Example: the braid arrangement

The braid arrangement in \mathbb{P}^3:
\[\{ x_0 = x_1, x_0 = x_2, x_0 = x_3, x_1 = x_2, x_1 = x_3, x_2 = x_3 \}. \]

Traditional to mod out line $x_0 = x_1 = x_2 = x_3$ to get a line arrangement with $\dim M(\mathcal{L}(A)) = 8$.
How many braid arrangements go through 8 points?

Four triple points: \(\text{det}[135] = \text{det}[146] = \text{det}[236] = \text{det}[245] = 0 \)

\[
(h_1 + h_3 + h_5)(h_1 + h_4 + h_6)(h_2 + h_3 + h_6)(h_2 + h_4 + h_5)(h_1 + \cdots + h_6)^8 / 4! = 22,995(h_1 \cdots h_6)^2
\]

\{ \text{Dets} = 0 \} = \text{Braids} \cup \text{Pencils}

Need to remove ordered 6-pencils before division:

\[
(6!) \times 3 \binom{8}{4} = 151,200.
\]

Get 400,680 ordered braid arrangements \(\Rightarrow 16,695 \) braids.
Point-line duality in \mathbb{P}^2: Line $ax + by + cz = 0 \leftrightarrow$ Point $[a : b : c]$.

\[P = [x_0 : y_0 : z_0] \quad \text{on line} \quad L : ax + by + cz = 0 \]
\[\hat{P} : x_0x + y_0y + z_0z = 0 \quad \text{through} \quad \hat{L} = [a : b : c]. \]

Dual of braid is 4-generic: there are 16,695 4-generics through 8 points.
Problem

Count arrangements of 6 hyperplanes in \(\mathbb{P}^5 \) that contain a common line and pass through 26 general points.

\[
\mathbf{M}(\mathcal{L}(\mathcal{A})) \subset \mathbb{G}(1, 5) \times (\mathbb{P}^5)^6
\]

\(\mathbb{G}(1, 5) \): Grassmannian of 1-planes in \(\mathbb{P}^5 \)

\[
\begin{bmatrix}
* & * & * & * & 1 & 0 \\
* & * & * & * & 0 & 1
\end{bmatrix} \rightarrow \dim \mathbb{G}(1, 5) = 8.
\]

Require \(\dim \mathbf{M}(\mathcal{L}(\mathcal{A})) = 8 + 6(3) = 26 \) points.
Cellular decomposition of $\mathbb{G}(1, 5)$: cells determined by position of leading ones:

$$\sigma_{14} = \left\{ M \in M_{2 \times 6} : M \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 1 & 0 & 0 \end{bmatrix} \right\} \rightarrow \dim \sigma_{14} = 2$$

Schubert calculus tells us how to multiply cohomology classes

- Giambelli formula \rightarrow special classes
- Pieri formula \rightarrow multiplication of special classes

Gatto: implemented Schubert calculus using HS-derivations
A cohomology class

\[Z := \{ (\Lambda, H) \in G(1, 5) \times \mathbb{P}^5 : \Lambda \subset H \} . \]

\(H \) must contain 2 independent points on \(\Lambda \): so \(\text{codim } Z = 2. \)

\[[Z] = a\sigma_{36} + b\sigma_{45} + c\sigma_{46}h + d\sigma_{56}h^2 \]

Multiply by \(\text{codim}-11 \) classes to find coefficients:

\[[Z_i] = \sigma_{45} + \sigma_{46}h_i + \sigma_{56}h_i^2 \]
Count 6-pencils of dim 1 through 26 points in \mathbb{P}^5

$$[Z_i] = \sigma_{45} + \sigma_{46}h_i + \sigma_{56}h_i^2$$

$$\text{ANS} = (h_1 + h_2 + h_3 + h_4 + h_5 + h_6)^{26} \prod_{i=1}^{6} [Z_i]$$

Schubert Calculus gives:

$$\sigma_{56}^2 \sigma_{45}^4 = \sigma_{56}^2 \sigma_{46}^2 \sigma_{45}^3 = 1 \sigma_{56}.$$

But

$$\sigma_{46}^4 \sigma_{45}^2 = 2 \sigma_{56}.$$

$$\text{ANS} = \left[\binom{6}{2,4} \binom{26}{3,3,5,5,5,5} + \binom{6}{1,2,3} \binom{26}{3,4,4,5,5,5} + 2 \binom{6}{4,2} \binom{26}{4,4,4,4,5,5} \right] / 6! = 10, 270, 301, 132, 391, 300$$
Parting thoughts

1. Need a better sense of how the intersection lattice of \mathcal{A} affects the dimension of $M(\mathcal{L}(\mathcal{A}))$ and the enumerative counts.

2. Currently working to generalize the higher-dimensional example to a theorem about pencils.

3. Is there a way to encode certain enumerative counts into an interesting generating function?

4. Our project is in its infancy and there’s room for many others to contribute.