Lecture on 4-16 to ?
SA305 Spring 2014

1 Zero-sum 2 Player Games

A zero sum game is where the sum of each players winnings is equal to zero. In every game each play has certain choices/moves/options/plays to make to try and win. Which order and how often a player uses these different moves is called a players strategy. We have two players call them P_1 and P_2. Suppose that P_1 has m different moves to make and P_2 has n. Then depending on which move each player makes we can represent P_1’s winnings from those choices. So, if P_1 chooses $i \in \{1, \ldots, m\}$ as their move and P_2 decides to do move $j \in \{1, \ldots, n\}$ then let

$$a_{ij} = P_1’s$$ winnings given P_1’s i move and P_2’s j move.

The $m \times n$-matrix

$$A = (a_{ij})$$

is called a payoff matrix. (Note: some texts use $a_{ij} =$ how much P_1 looses.)

Now suppose that P_1 decides to do move i with probability y_i and P_2 does move j with probability x_j. Then the expected winnings of player P_1 is

$$\vec{y}^\top A\vec{x}.$$

If we were to fix a strategy for P_2, the column player, then P_1 wants to find a strategy that maximizes her expected winnings

$$\max_{\vec{y}} \vec{y}^\top A\vec{x}.$$

However P_2 can decide a different strategy and wants to minimize what P_1 is maximizing

$$\min_{\vec{x}} \max_{\vec{y}} \vec{y}^\top A\vec{x}.$$

This is the problem that the column player P_2 wants to solve. The constraints are that

$$\sum_{i=1}^{n} x_i = 1$$

and $\vec{x} \geq 0$ since \vec{x} is a probability vector.

Similarly, the row player P_1 wants to solve the problem

$$\max_{\vec{y}} \min_{\vec{x}} \vec{y}^\top A\vec{x}$$

where the constraints are $\sum_{i=1}^{n} y_i = 1$ and $\vec{y} \geq 0$. These problems do not immediately look like linear programs, but actually we can convert them into linear programs.
First we introduce a new variable. Suppose that
\[v = \max_{\vec{y}} \vec{y}^\top A\vec{x}. \]

Now \(A\vec{x} \) is a vector that when multiplied with \(\vec{y} \) gives the expected payoff for \(P1 \). The definitely \(v \) must be greater than each coordinate of \(A\vec{x} \) because we could just choose
\[
\vec{y} = e_i = \begin{bmatrix} 0 \\ \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0 \\ \\
\end{bmatrix} \quad \text{\(i^{th} \) coordinate}
\]

From this we have that for all \(i \in \{1, \ldots, m\} \)
\[v \geq e_i^\top A\vec{x}. \]

For the column player \(P2 \) we have show that the optimal strategy to the minimax problem is actually the solution to the linear program
\[
\begin{align*}
\min & \quad v \\
\text{s.t.} & \quad v \geq e_i^\top A\vec{x} \text{ for all } i \in \{1, \ldots, m\} \\
& \quad \sum_{i=1}^{n} x_i = 1 \\
& \quad \vec{x} \geq 0.
\end{align*}
\]

To turn this into matrix form we note that all the constraints \(v \geq e_i^\top A\vec{x} \) can be written as
\[-A\vec{x} + ve \geq \vec{0} \]

where \(e \) is the all ones vector
\[
e = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}
\]
of length \(m \). Writing the variables in vector form
\[
\begin{bmatrix} \vec{x} \\ v \end{bmatrix}
\]
we can now put the entire linear program in matrix form.
\[
\begin{align*}
&\min \begin{bmatrix} \bar{0} & 1 \end{bmatrix} \begin{bmatrix} \bar{x} \\ v \end{bmatrix} \\
&\text{s.t.} \begin{bmatrix} -A & e \\ e^\top & 0 \end{bmatrix} \begin{bmatrix} \bar{x} \\ v \end{bmatrix} \geq \begin{bmatrix} \bar{0} \\ 1 \end{bmatrix} \\
&\bar{x} \geq 0, \ v\text{-unrestricted}.
\end{align*}
\]

Examining the row players P1 maximin problem in the same way we let

\[u = \min_{\bar{x}} \bar{y}^\top A \bar{x}. \]

Then with the same notation we have

\[u \leq \bar{y}^\top A e_i. \]

Hence the linear program we get in this case is

\[
\begin{align*}
&\max \quad u \\
&\text{s.t.} \quad u \leq \bar{y}^\top A e_i \quad \text{for all } i \in \{1, \ldots, n\} \\
&\quad \sum_{i=1}^n y_i = 1 \\
&\quad \bar{y} \geq 0.
\end{align*}
\]

Multiplying both sides of the constraints from \(A \) again by \(e^\top \) instead of \(e \) we get

\[u e^\top \leq \bar{y}^\top A. \]

Taking transpose of both sides we have

\[u e \leq A^\top \bar{y}. \]

Hence in matrix form the rows players linear program is

\[
\begin{align*}
&\max \begin{bmatrix} \bar{0} & 1 \end{bmatrix} \begin{bmatrix} \bar{y} \\ u \end{bmatrix} \\
&\text{s.t.} \begin{bmatrix} -A^\top & e \\ e^\top & 0 \end{bmatrix} \begin{bmatrix} \bar{y} \\ u \end{bmatrix} \leq \begin{bmatrix} \bar{0} \\ 1 \end{bmatrix} \\
&\bar{y} \geq 0, \ u\text{-unrestricted}.
\end{align*}
\]

By a quick inspection these two linear programs are duals of each other. This together with the \textbf{Strong Duality Theorem} proves the famous maximin theorem which was originally proved by John von Neumann and who won the Nobel Prize for this result in economics.

\textbf{Theorem 1.1.} The row players optimal value \(u^* \) is equal to the column players optimal value \(v^* \)

\[u^* = v^*. \]

Now we examine an example.
2 Poker

The game we are about to study is a very simplified poker game but the solution to the problem gives insights into how optimal play might be conducted in a real setting.

This game is called a limit one half street clairvoyance game. Here are the rules and setting:

- Two players get one card.
- Pot has P dollars.
- Highest card wins and each player has .5 probability of winning.
- P_1 can bet 1 dollar or pass.
- P_2 can call (match P_1’s bet or pass) or fold (only when P_1 bets).
- P_1 is clairvoyant, can see P_2’s cards.

If P_1 checks then the only thing that P_2 can do is pass and they each win with equal probability. The interesting thing to consider is when P_1 bets. There are two cases the one where P_1 knows they have won and when they know they have lost. The payoff matrix we study is the following:

<table>
<thead>
<tr>
<th></th>
<th>P_2 calls</th>
<th>P_2 folds</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1 not bluff bet</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P_1 bluff bet</td>
<td>-1</td>
<td>P</td>
</tr>
</tbody>
</table>

Taking this payoff matrix and putting it into the matrix form LP for the P_1’s perspective we get:

\[
\begin{align*}
\text{max} & \quad [0 \ 0 \ 1] \begin{bmatrix} \bar{y} \\ u \end{bmatrix} \\
\text{s.t.} & \quad \begin{bmatrix} -1 & 1 & 1 \\ 0 & -P & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ u \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
& \quad \bar{y} \geq 0, \ u\text{-unrestricted.}
\end{align*}
\]

Unfortunately we can not run this on ampl because there is the variable P in the constraint coefficients which makes this NOT linear and ampl runs strictly with numerical examples. But we just want to treat P as a constant and solve the optimization problem for any pot size P. The proof of the Strong Duality Theorem gives us the solution since we can construct the dual solution if we know a basis for the optimal solution! But here there are 3 variables and 3 constraints. This means that there will not be any non-basic variables.
and hence the basis B is all the variables. Then the construction in the proof says that the optimal in the dual is (in this case the variables we want are $[\vec{x}, v]$)

$$[\vec{x}, v]^* = \vec{c}_B B^{-1}$$

where in this case

$$B = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -P & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

and it’s inverse is a little messy to write out but $\vec{c}_B = [0, 0, 1]$ is the entire objective function coefficient vector. The solution is

$$\vec{x}^* = \begin{bmatrix} \frac{P}{P+2} & \frac{P+2}{P+2} & \frac{P}{P+2} \end{bmatrix}.$$

Repeating this same process for $P1$’s strategy we get

$$[\vec{y}, u]^* = \begin{bmatrix} \frac{P+1}{P+2} & \frac{1}{P+2} & \frac{P}{P+2} \end{bmatrix}.$$