Applications of DEs:
Simple LRC circuits

An LRC circuit is a closed loop containing an inductor of L henries, a resistor of R ohms, a capacitor of C farads, and an EMF (electro-motive force), or battery, of $E(t)$ volts, all connected in series.

They arise in several engineering applications. For example, AM/FM radios with analog tuners typically use an LRC circuit to tune a radio frequency. Most commonly a variable capacitor is attached to the tuning knob, which allows you to change the value of C in the circuit and tune to stations on different frequencies [R].

We use the following “dictionary” to translate between the diagram and the DEs.

<table>
<thead>
<tr>
<th>EE object</th>
<th>term in DE (the voltage drop)</th>
<th>units</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge</td>
<td>$q = \int i(t), dt$</td>
<td>coulombs</td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>$i = q'$</td>
<td>amps</td>
<td></td>
</tr>
<tr>
<td>emf</td>
<td>$e = e(t)$</td>
<td>volts V</td>
<td></td>
</tr>
<tr>
<td>resistor</td>
<td>$Rq' = Ri$</td>
<td>ohms Ω</td>
<td></td>
</tr>
<tr>
<td>capacitor</td>
<td>$C^{-1}q$</td>
<td>farads</td>
<td></td>
</tr>
<tr>
<td>inductor</td>
<td>$Lq'' = Li'$</td>
<td>henries</td>
<td></td>
</tr>
</tbody>
</table>

Kirchoff’s First Law: The algebraic sum of the currents travelling into any node is zero.

Kirchoff’s Second Law: The algebraic sum of the voltage drops around any closed loop is zero.

Generally, the charge at time t on the capacitor, $q(t)$, satisfies the DE

$$Lq'' + Rq' + \frac{1}{C}q = e(t). \quad (1)$$

When there is no EMF, sometimes the following terminology is used. If $R > 2\sqrt{L/C}$ ("R is large") then the circuit is called **overdamped**. If $R = 2\sqrt{L/C}$ ("R is large") then the circuit is called **critically-damped**. If $0 \geq R < 2\sqrt{L/C}$ ("R is large") then the circuit is called **underdamped**.

Example 1: Consider the simple LC circuit given by the diagram in Figure 1.

![Figure 1: A simple LC circuit.](image)

This is a simple model illustrating the idea of a radio tuner (the variable capacitor) which can tune into only two stations, "channel 2" and "channel 11".

According to Kirchoff’s 2nd Law and the above "dictionary", this circuit corresponds to the DE

$$q'' + \frac{1}{C}q = \sin(2t) + \sin(11t).$$

The homogeneous part of the solution is

$$q_h(t) = c_1 \cos(t/\sqrt{C}) + c_1 \sin(t/\sqrt{C}).$$

If $C \neq 1/4$ and $C \neq 1/121$ then

$$q_h(t) = \frac{1}{C-1-4} \sin(2t) + \frac{1}{C-1-121} \sin(11t).$$
When $C = 1/4$ and the initial charge and current are both zero, the solution is

$$q(t) = - \frac{1}{117} \sin(11t) + \frac{161}{936} \sin(2t) - \frac{1}{4} t \cos(2t).$$

This is displayed in Figure 2.
You can see how the frequency $\omega = 2$ dominates the other terms.

When $0 < R < 2\sqrt{L/C}$ the homogeneous form of the charge in (1) has the form

$$q_h(t) = c_1e^{\alpha t}\cos(\beta t) + c_2e^{\alpha t}\sin(\beta t),$$

where $\alpha = -R/2L < 0$ and $\beta = \sqrt{4L/C - R^2/(2L)}$. This is sometimes called the **transient part** of the solution. The remaining terms in the charge are called the **steady state terms**.

Example: An LRC circuit has a 1 henry inductor, a 2 ohm resistor, $1/5$ farad capacitor, and an EMF of $50\cos(t)$. If the initial charge and current is 0, since the charge at time t.

The IVP describing the charge $q(t)$ is

$$q'' + 2q' + 5q = 50\cos(t), \quad q(0) = q'(0) = 0.$$

The homogeneous part of the solution is

$$q_h(t) = c_1e^{-t}\cos(2t) + c_2e^{-t}\sin(2t).$$

The general form of the particular solution using the method of undetermined coefficients is

$$q_p(t) = A_1\cos(t) + A_2\sin(t).$$

Solving for A_1 and A_2 gives

$$q_p(t) = -10e^{-t}\cos(2t) - \frac{15}{2}e^{-t}\sin(2t).$$

```
SAGE
sage: t = var("t")
sage: q = function("q",t)
sage: L,R,C = var("L,R,C")
sage: E = lambda t: 50*cos(t)
sage: de = lambda y: L*diff(y,t,t) + R*diff(y,t) + (1/C)*y-E(t)
sage: L,R,C = 1,2,1/5
sage: de(q(t))
diff(q(t), t, 2) + 2*diff(q(t), t, 1) + 5*q(t) - 50*cos(t)
sage: desolve_laplace(de(q(t)),["t","q"],[0,0,0])
```
This plot (the solution superimposed with the transient part of the solution) is displayed in Figure 3.

Figure 3: A LRC circuit, with damping, and the transient part (dashed) of the solution.

Exercise: Use SAGE to solve

\[q'' + \frac{1}{C} q = \sin(2t) + \sin(11t), \quad q(0) = q'(0) = 0, \]

in the case \(C = 1/121 \).
References

