Second order ODEs - variation of parameters

Prof. Joyner, 9-3-2007

Consider an ordinary constant coefficient non-homogeneous 2nd order linear differential equation,

\[ay'' + by' + cy = F(x) \]

where \(F(x) \) is a given function and \(a, b, \) and \(c \) are constants. (For the method below, \(a, b, \) and \(c \) may be allowed to depend on the independent variable \(x \) as well.) Let \(y_1(x), y_2(x) \) be fundamental solutions of the corresponding homogeneous equation

\[ay'' + by' + cy = 0. \]

The method of variation of parameters is originally attributed to Joseph Louis Lagrange (1736-1813) \cite{L}. It starts by assuming that there is a particular solution in the form

\[y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x), \]

where \(u_1(x), u_2(x) \) are unknown functions \cite{V}.

In general, the product rule gives

\[
(fg)' = f'g + fg',
\]

\[
(fg)'' = f''g + 2f'g' + fg'',
\]

\[
(fg)''' = f'''g + 3f''g' + 3f'g'' + fg''',
\]

and so on, following Pascal’s triangle,

\[
\begin{array}{c}
1 \\
1 1 \\
1 2 1 \\
1 3 3 1,
\end{array}
\]

and so on.

\footnote{These notes licensed under Attribution-ShareAlike Creative Commons license, \url{http://creativecommons.org/about/licenses/meet-the-licenses}.}
Using SAGE, this can be check as follows:

```python
sage: t = var('t')
sage: x = function('x', t)
sage: y = function('y', t)
sage: diff(x(t)*y(t),t)
x(t)*diff(y(t), t, 1) + y(t)*diff(x(t), t, 1)
sage: diff(x(t)*y(t),t,t)
x(t)*diff(y(t), t, 2) + 2*diff(x(t), t, 1)*diff(y(t), t, 1) + y(t)*diff(x(t), t, 2)
sage: diff(x(t)*y(t),t,t,t)
x(t)*diff(y(t), t, 3) + 3*diff(x(t), t, 1)*diff(y(t), t, 2) + 3*diff(x(t), t, 2)*diff(y(t), t, 1) + y(t)*diff(x(t), t, 3)
```

By assumption, \(y_p \) solves the ODE, so

\[ay''_p + by'_p + cy_p = F(x). \]

After some algebra, this becomes:

\[a(u'_1y_1 + u'_2y_2) + a(u'_1y'_1 + u'_2y'_2) + b(u'_1y_1 + u'_2y_2) = F. \]

If we assume

\[u'_1y_1 + u'_2y_2 = 0 \]

then we get massive simplification:

\[a(u'_1y'_1 + u'_2y'_2) = F. \]

Cramer’s rule says that the solution to this system is

\[
\begin{align*}
 u'_1 &= \frac{\det \begin{pmatrix} 0 & y_2 \\ F(x) & y'_2 \end{pmatrix}}{\det \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}}, \\
 u'_2 &= \frac{\det \begin{pmatrix} y_1 & 0 \\ y'_1 & F(x) \end{pmatrix}}{\det \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}}.
\end{align*}
\]

Note that the Wronskian of the fundamental solutions \(W(y_1, y_2) \) is in the denominator.

Solve these for \(u_1 \) and \(u_2 \) by integration and then plug them back into \(y_p \) to get your particular solution.
Example 1. Solve

\[y'' + y = \tan(x). \]

\text{soln: The functions } y_1 = \cos(x) \text{ and } y_2 = \sin(x) \text{ are fundamental solutions with Wronskian } W(\cos(x), \sin(x)) = 1. \text{ The Cramer’s rule formulas above become:}\\

\[u'_1 = \frac{\det \begin{pmatrix} 0 & \sin(x) \\ \tan(x) & \cos(x) \\ 1 \end{pmatrix}}{1}, \quad u'_2 = \frac{\det \begin{pmatrix} \cos(x) & 0 \\ -\sin(x) & \tan(x) \\ 1 \end{pmatrix}}{1}. \]

Therefore,

\[u'_1 = -\frac{\sin^2(x)}{\cos(x)}, \quad u'_2 = \sin(x). \]

Therefore, using methods from integral calculus, \(u_1 = -\ln |\tan(x) + \sec(x)| + \sin(x) \) and \(u_2 = -\cos(x) \). Using SAGE, this can be check as follows:

```
sage: integral(-sin(t)^2/cos(t),t)
-log(sin(t) + 1)/2 + log(sin(t) - 1)/2 + sin(t)
sage: integral(cos(t)-sec(t),t)
-sin(t) - log(tan(t) + sec(t))
sage: integral(sin(t),t)
-cos(t)
```

As you can see, there are other forms the answer can take. The particular solution is

\[y_p = (-\ln |\tan(x) + \sec(x)| + \sin(x)) \cos(x) + (-\cos(x)) \sin(x). \]

The homogeneous (or complementary) part of the solution is

\[y_h = c_1 \cos(x) + c_2 \sin(x), \]

so the general solution is
\[y = y_h + y_p = c_1 \cos(x) + c_2 \sin(x) \\
+(- \ln |\tan(x) + \sec(x)| + \sin(x)) \cos(x) + (-\cos(x)) \sin(x). \]

Using SAGE, this can be carried out as follows:

```python
sage: SR = SymbolicExpressionRing()
sage: MS = MatrixSpace(SR, 2, 2)
sage: W = MS([[\cos(t), \sin(t)],[\diff(\cos(t), t), \diff(\sin(t), t)]];
sage: W

[ cos(t) sin(t)]
[-sin(t) cos(t)]
sage: det(W)
\sin(t)^2 + \cos(t)^2
sage: U1 = MS([[0, \sin(t)],[\tan(t), \diff(\sin(t), t)]])
sage: U2 = MS([[\cos(t), 0],[\diff(\cos(t), t), \tan(t)]])
sage: integral(det(U1)/det(W), t)
-\log(\sin(t) + 1)/2 + \log(\sin(t) - 1)/2 + \sin(t)
sage: integral(det(U2)/det(W), t)
-\cos(t)
```

Exercise: Use SAGE to solve \(y'' + y = \cot(x) \).

References

