Fourier Transforms and Convolutions
By: 1/C Nick Culver
Who Was Fourier??

- Noticeably gifted by age 14
- Priest or Mathematician?
- Math it is
- Taught at the Collège de France
- Joined Napoleon’s Army
- OIC of discoveries in Egypt
- Poisson and Biot
What is Fourier Analysis?

- Fourier analysis allows a system to be separated or decomposed into components made up of simpler inputs.
- For example, a function $f(t)$ is a function in time but via a Fourier transform becomes $f(w)$, where omega is a frequency.
Convolution:

- Steward describes convolution as “the distribution of one function in accordance with the law specified by another function (85).”
Convolution cont.

- Overlaps that are a result of spreading and smearing of a function
Definition of convolution and theorem

If f and g are two functions with $\|f\|$ and $\|g\|$ finite, the convolution of f and g is denoted by $f * g$ and is defined by:

$$f * g(x) = \int_{-\infty}^{\infty} f(s) g(x-s) \, ds$$

PROOF (The Convolution Theorem and its Applications)

$$f * g(x) = \int_{-\infty}^{\infty} f(s) g(x-s) \, ds$$

Let $w = u - x$

$$f * g(x) = \int_{-\infty}^{\infty} f(s) g(x-s) \, ds e^{2\pi i su} du$$

$$= \int_{-\infty}^{\infty} f(s) g(u-x) \, ds e^{2\pi i su} du$$

$$= \int_{-\infty}^{\infty} f(x-w) g(w) e^{2\pi i wu} \, dw$$
Convolution Theorem. The Fourier Transform of the convolution of two functions \(f \) and \(g \) is the multiplication of the Fourier transform of \(f \) with the Fourier transform of \(g \):

\[
\hat{f} \ast \hat{g} = \hat{f} \cdot \hat{g}
\]

Convolution Theorem - Inverse: The inverse Fourier transform of \(\hat{f} \cdot \hat{g} \) is the convolution of \(f \ast g \)

Proof

Using the inverse Fourier Transform.

\[
\mathcal{F}^{-1}\left\{ \hat{f} \cdot \hat{g} \right\} = \mathcal{F}^{-1}\left\{ \hat{f} \right\} \cdot \mathcal{F}^{-1}\left\{ \hat{g} \right\}
\]

Now interchange the integrals and add the exponents. pg 177

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s) \cdot g(u+s) e^{-2\pi i (s+u)x} \, ds \, du
\]

This is the integral of \(\hat{g} \cdot \hat{f} \) with the variable \(s \). So we get \(g \ast f \) for that integral.

Thus, \(\mathcal{F}^{-1}\left\{ \hat{f} \cdot \hat{g} \right\} = f \ast g \)

Change the sum exponentials to a product of exponentials

\[
= \int_{-\infty}^{\infty} f(x-w) e^{2\pi i x w} \cdot g(w) e^{2\pi i w x} \, dx \, dw
\]

\[
= \int_{-\infty}^{\infty} f(x-w) e^{2\pi i x w} \, dx \cdot \int_{-\infty}^{\infty} g(w) e^{2\pi i w x} \, dw
\]

\(w \) is a dummy variable so replace \(w \) with \(x \)

\[
\ast \mathcal{F}^{-1}\left\{ \hat{f} \cdot \hat{g} \right\} = \int_{-\infty}^{\infty} f(x-w) e^{2\pi i x w} \cdot g(w) e^{2\pi i w x} \, dw
\]

Thus \(\ast \mathcal{F}^{-1}\left\{ \hat{f} \cdot \hat{g} \right\} = f \ast g \cdot g \ast f \)
Parseval's Equality

Energy Conservation Statement

Theorem. (Walker 102)

We define $\sum_{n=1}^{\infty} a_n \sin\frac{nx}{L}$ as the Fourier sine series for the function g.

where $\|g\|^2 < \infty$ if and only if $\sum_{n=1}^{\infty} |a_n|^2$ is convergent. Thus introducing

Parseval's equality:

$$\frac{1}{L} \sum_{n=1}^{L} |a_n|^2 = \int_0^L |g(x)|^2 \, dx = \|g\|^2$$

In physics, the relation is normally written as.

Given $f^x = \frac{1}{\sqrt{2\pi}} \int f(x) e^{ikx} \, dx$ and $\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{-ikx} \, dx$. (Prof. Tankersley)

$$g^x = \frac{1}{\sqrt{2\pi}} \int g(x) e^{imx} \, dx$$

Then Parseval's equality becomes.

$$\overline{g^x} f^x \, dx = \int \overline{f(x)} \hat{f}(x) \, dk$$

where $\overline{g^x}$ and $\overline{f^x}$ is the complex conjugate.