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Viacremechanical Analysis of
_aminates



Stress —Strain Relations for an
|setropic Beam

Consider a prismatic beam of cross-section A under an applied axial load P.

Assumes that the normal stress and strain are uniform and constant in the
beam and are dependent on the load P being applied at the centroid of
the cross-section.

One dimensional analysis



Stress —Strain Relations for an
|setropic Beam

Consider the same prismatic beam in a pure bending moment M.
The beam is assumed to initially straight and the applied loads pass through
a plane of symmetry to avoid twisting.
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Neglects transverse shear.
Assumes plane sections remain plane.
| s the second moment of area (often mistakenly referred to as the moment of inertia.)




Stress —Strain Relations for an
|SetropIc Beam

Finally consider the beam under combined loading.
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Where ¢, is the strain at y = 0 (through the centroid),
and k = the curvature of the beam.
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iraln-DISplaceEmMeEnt Equations
oK an AnIsetrepic Laminate

» Use Classical Lamination Theory (CLT) te.develop similar
relationships in 3D for a laminate (plate) under combined
shear and axial forces and bending and twisting moments.

» The following assumptions are made to develop the
relationships:
» Each lamina is homogeneous and orthotropic
» The laminate is thin and is loaded in plane only (plane stress)
» Displacements are continuous and small throughout the laminate
» Each lamina is elastic (stress-strain relations are linear)
» No slip occurs between the lamina interfaces
» Transverse shear strains are negligible
» The transverse normal strain is negligible
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Strain:-IDisplacement Equations
for an Anisotrepic LLaminate

Consider the general case of a plate under in-plane shear-and axial loading,
as well'as bending and twisting moments.
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Can derive the following

LT [ M
Strain-displacement equation: x
where | ¢, | are the midplane strains
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Strain and Stress 1n a Laminate

If the strains are known at any point-along the thickness of the laminate,
the stress-strain equation calculates the 'global stresses in each lamina
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The reduced transformed stiffness matrix, Q, corresponds to that of the ply
located at the point along the thickness of the laminate.

Substituting the previous result,

Qw Qy Q.
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Strain and Stress I1n a Laminate
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Laminate Strain \Variation Stress Variation
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Strraln ana Stress Infa Laminate

» These global stresses can then be transformed to local
stresses through the Transformation equation.

» Likewise, the local strains can be transformed to global
strains.

» Can then be used In the Fallure criteria discussed
previously.

» All that remains is how to find the midplane strains and
curvatures of a laminate if the applied loading is known?




Eorce and Moment Resultants
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=0rce anaiiviement Resultants

» Integrating the global stresses in each lamina gives the resultant
forces per unit length in the x-y plane through the laminate
thickness as

h/2 h/2 Pd

= jaxdz M, = jaxzdz

—h/2 ~h/2 N,, = shear force/unit length
h/2 h/2

- Igydz M, = .[GyZdZ M,, M, = bending moment/unit length

-h/2 -h/2

xo e normal force/unit length

e o M,, = twisting moment/unit length

N, = Irxydz M, = _[rxyzdz

Xy Xy
-h/2 -h/2

» Similarly, integrating the stresses in each lamina gives he resulting
moments per unit length in the x-y plane through the thickness of
the laminate.



Eorce and Moment Resultants
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Eorce and Moment Resultants
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Eorce and Moment Resultants

© 2003, P. Joyce



Eorce and Moment Resultants
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Eorce and Moment Resultants

N, ={ 330k - e, | 23Tt -,
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Laminated Composite Analysis

[N ]x,y = [Au ]‘90 xy T [Bij ][K]x,y
M],, = [Bij ][5 O]x,y + [Dij IK oy

© 2003, P. Joyce



_aminated Compesite Analysls

» The extensional stiffness matrix [A] relates,the resultant in-
plane force to the in-plane strains.

» The bending stiffness matrix [D] relates the resultant
bending moments to the plate curvatures.

» The coupling stiffness matrix [B] relates the force and
moment terms to the midplane strains and midplane
curvatures.



| amiinater Spe
» Symmetric: [B] =0

» Load-deformation equation and moment-curvature
relation decoupled.

» Balanced: Az = A,;=0.

» Symmetric and Balanced:
» Orthotropic with respect to inplane behavior.
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| aminate S
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»> Some decoupling of the six equations.

» Orthotropic with respect to both inplane and bending behavior.
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» Symmetric Cross-Ply:
> [B] =0

» Ag = Ay =Dyg = Dy =0.
» Significant decoupling
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» Orthotropic with respect to both inplane and bending behavior.
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| aminatealComposite Analysis

The following are steps for analyzing a laminated composite subjected to the
applied forces and moments:

Find the values of the reduced stiffness matrix [Q;;] foreach ply.
Find the value of the transformed reduced stiffness matrix [Q,,].
Find the coordinates of the top and bottom surfaces of each ply.
Find the 3 stiffness matrices [A], [B], and [D].

Calculate the midplane strains and curvatures using the 6 simultaneous equations
(substitute the stiffness matrix values and the applied forces and moments).

Knowing the z location of each ply compute the global strains in each ply.
Use the stress-strain equation to find the global stresses.
8.  Use the Transformation equation to find the local stresses and strains.
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| aminate Compliances

» Since multidirectional laminates are characterized by stress
discontinuities from ply to ply, it is preferable to work with
strains which are continuous through the thickness.

» For this reason it Is necessary to invert the load-
deformation relations and express strains and curvatures as
a function of applied loads and moments.



[Laminate Compliances
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[Laminate Compliances

el-—o]'[e ] atso [c]- T
[d]=[D°J"

and

[B°]={AT"[B]
lc]=[BAT"
[b°]=[D]- {BIAT" B]
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Engineenng Constants for a
Multi=Axial Laminate
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=ENgINEering; Constants 1or a
VIUTo=AXxial Laminate

»  Computational Procedure for Determination of'Engineering Elastic
Properties
Determine the engineering constants of UD layer, E,, E,, v;,, and G,.

Calculate the layer stiffnesses in the principal material axes, Q,;, Q,,, Q5.

and Qg
Enter the fiber orientation of each layer, k.

Calculate the transformed stiffnesses [Q], , of each layer, k.

Enter the through thickness coordinates of the layer surfaces.
Calculate the laminate stiffness matrices [A], [B], and [D].
Calculate the laminate compliance matrix [a].

Enter total laminate thickness, h.

Calculate the laminate engineering properties in global, X, y axes.

A
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[Laminated Composite Analysis
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