

Macromechanical Analysis of Laminates

Stress -Strain Relations for an Isotropic Beam

Consider a prismatic beam of cross-section A under an applied axial load P.

Assumes that the normal stress and strain are uniform and constant in the beam and are dependent on the load P being applied at the centroid of the cross-section.

Stress -Strain Relations for an Isotropic Beam

Consider the same prismatic beam in a pure bending moment M.
The beam is assumed to initially straight and the applied loads pass through a plane of symmetry to avoid twisting.

Neglects transverse shear.
Assumes plane sections remain plane.
Is the second moment of area (often mistakenly referred to as the moment of inertia.)

Stress -Strain Relations for an Isotropic Beam

Finally consider the beam under combined loading.

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{P}{E A}+\frac{M z}{E I} \\
& \varepsilon_{x x}=\varepsilon_{0}+z\left(\frac{1}{\rho}\right) \\
& \varepsilon_{x x}=\varepsilon_{0}+z \kappa
\end{aligned}
$$

Where ε_{0} is the strain at $y=0$ (through the centroid), and $\kappa=$ the curvature of the beam.

Strain-Displacement Equations for an Anisotropic Laminate

> Use Classical Lamination Theory (CLT) to develop similar relationships in 3D for a laminate (plate) under combined shear and axial forces and bending and twisting moments.
$>$ The following assumptions are made to develop the relationships:
$>$ Each lamina is homogeneous and orthotropic
$>$ The laminate is thin and is loaded in plane only (plane stress)
> Displacements are continuous and small throughout the laminate
$>$ Each lamina is elastic (stress-strain relations are linear)
$>$ No slip occurs between the lamina interfaces
> Transverse shear strains are negligible
$>$ The transverse normal strain is negligible

Strain-Displacement Equations for an Anisotropic Laminate

Strain and Stress in a Laminate

If the strains are known at any point along the thickness of the laminate, the stress-strain equation calculates the global stresses in each lamina
$\left[\begin{array}{c}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right]=\left[\begin{array}{lll}Q_{x x} & Q_{x y} & Q_{x s} \\ Q_{x y} & Q_{y y} & Q_{y s} \\ Q_{x s} & Q_{y s} & Q_{s s}\end{array}\right]\left[\begin{array}{l}\varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{x y}\end{array}\right]$

The reduced transformed stiffness matrix, $Q_{x y}$ corresponds to that of the ply located at the point along the thickness of the laminate.

Substituting the previous result,
$\left[\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right]=\left[\begin{array}{lll}Q_{x x} & Q_{x y} & Q_{x s} \\ Q_{x y} & Q_{y y} & Q_{y s} \\ Q_{x s} & Q_{y s} & Q_{s s}\end{array}\right]\left[\begin{array}{lll}\varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{x y}^{0}\end{array}\right]+z\left[\begin{array}{lll}Q_{x x} & Q_{x y} & Q_{x s} \\ Q_{x y} & Q_{y y} & Q_{y s} \\ Q_{x s} & Q_{y s} & Q_{s s}\end{array}\right]\left[\begin{array}{c}\kappa_{x} \\ \kappa_{y} \\ \kappa_{x y}\end{array}\right]$

Strain and Stress in a Laminate

> The stresses vary linearly only through the thickness of each lamina.
$>$ The stresses may jump from lamina to lamina since the transformed reduced stiffness matrix changes from ply to ply.

Strain and Stress in a Laminate

$>$ These global stresses can then be transformed to local stresses through the Transformation equation.
$>$ Likewise, the local strains can be transformed to global strains.
$>$ Can then be used in the Failure criteria discussed previously.
$>$ All that remains is how to find the midplane strains and curvatures of a laminate if the applied loading is known?

Force and Moment Resultants

> The stresses in each lamina can be integrated to give resultant forces and moments (or applied forces and moments.)
> Since the forces and moments applied to a laminate will be known, the midplane strains and plate curvatures can then be found.
> Consider a laminate made of n plies as shown, each ply has a thickness t_{k}.
$>$ The location of the midplane is $\mathrm{h} / 2$ from the top or bottom surface.
> The z coordinate of each ply surface is given by

© 2003, P. Joyce

Force and Moment Resultants

$>$ Integrating the global stresses in each lamina gives the resultant forces per unit length in the x - y plane through the laminate thickness as

$$
\begin{array}{lll}
N_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} d z & M_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} z d z & N_{x}, N_{y}=\text { normal force/unit length } \\
N_{x y}=\text { shear force/unit length } \\
N_{y}=\int_{-h / 2}^{h / 2} \sigma_{y} d z & M_{y}=\int_{-h / 2}^{h / 2} \sigma_{y} z d z & M_{x}, M_{y}=\text { bending moment/unit length } \\
N_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} d z & M_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y} z d z & M_{x y}=\text { twisting moment/unit length }
\end{array}
$$

$>$ Similarly, integrating the stresses in each lamina gives he resulting moments per unit length in the $x-y$ plane through the thickness of the laminate.

Force and Moment Resultants

$>$ In matrix form

$$
\begin{array}{ll}
{\left[\begin{array}{c}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right]=\int_{-h / 2}^{h / 2}\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right] d z} & {\left[\begin{array}{c}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right]=\sum_{k=1}^{n} \int_{h_{k-1}}^{h_{x}}\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y} \\
m_{x} \\
M_{y} \\
M_{x y}
\end{array}\right] d z=\int_{-h / 2}^{h / 2}\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right] z d z \longrightarrow\left[\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right]=\sum_{k=1}^{n} \int_{h_{h x-1}}^{h_{k}}\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right] z d z}
\end{array}
$$

> Substituting

$$
\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\left[\begin{array}{lll}
Q_{x x} & Q_{x y} & Q_{x s} \\
Q_{x y} & Q_{y y} & Q_{y s} \\
Q_{x s} & Q_{y s} & Q_{s s}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]
$$

Force and Moment Resultants

$>$ The resultant forces and moments can be written in terms of the midplane strains and curvatures

Force and Moment Resultants

> Since the midplane strains and plate curvatures are independent of the z coordinate and the transformed reduced stiffness matrix is a constant for each ply -

© 2003, P. Joyce

Force and Moment Resultants

$>$ From the geometry (and a little calculus) we can solve the integrals

mid-plane
© 2003, P. Joyce

Force and Moment Resultants

$>$ Furthermore only the stiffnesses are unique for each layer, k. Thus, $\left[\varepsilon^{0}\right]_{x, y}$ and $[\kappa]_{x, y}$ can be factored outside the summation sign

$$
\begin{aligned}
& {[N]_{x, y}=\left[\sum_{k=1}^{n}\left[Q_{x, y}^{k}\left(h_{k}-h_{k-1}\right)\right]\left[\varepsilon^{o}\right]_{k, y}+\left[\frac { 1 } { 2 } \sum _ { k = 1 } ^ { n } [Q _ { k , y } ^ { k } (h _ { k } ^ { 2 } - h _ { k - 1 } ^ { 2 })] \left[k_{k, y}\right.\right.\right.} \\
& {[M]_{x, y}=\left[\frac{1}{2} \sum_{k=1}^{n}\left[Q Q_{k, y}^{k}\left(h_{k}^{2}-h_{k-1}^{2}\right)\right]\left[\varepsilon^{0}\right]_{k, y}+\left[\frac { 1 } { 3 } \sum _ { k = 1 } ^ { n } [Q _ { k , y } ^ { k } (h _ { k } ^ { 3 } - h _ { k - 1 } ^ { 3 })] \left[k_{k, y}\right.\right.\right.}
\end{aligned}
$$

> Define

$$
A_{i j}=\sum_{k=1}^{n}[Q]_{x, y}^{k}\left(h_{k}-h_{k-1}\right), B_{i j}=\frac{1}{2} \sum_{k=1}^{n}[Q]_{x, y}^{k}\left(h_{k}{ }^{2}-h_{k-1}{ }^{2}\right), D_{i j}=\frac{1}{3} \sum_{k=1}^{n}\left[Q Q_{x, y}^{k}\left(h_{k}{ }^{3}-h_{k-1}{ }^{3}\right)\right.
$$

$>[\mathrm{A}],[\mathrm{B}],[\mathrm{D}]$ are called the extensional, coupling, and bending stiffness matrices, respectively.

Laminated Composite Analysis

$$
\begin{aligned}
& {[N]_{x, y}=\left[A_{i j}\left[\varepsilon^{0}\right]_{x, y}+\left[B_{i j}\right] K\right]_{x, y}} \\
& \left.[M]_{x, y}=\left[B_{i j}\right] \varepsilon^{0}\right]_{x, y}+\left[D_{i j}\right][\kappa]_{x, y}
\end{aligned}
$$

Combine into one general expression for laminate composite analysis relating the in-plane forces and moments to the midplane strains and curvatures -
$\left[\begin{array}{c}N_{x} \\ N_{y} \\ N_{x y} \\ M_{x} \\ M_{y} \\ M_{x y}\end{array}\right]=\left[\begin{array}{llllll}A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66}\end{array}\right]\left[\begin{array}{c}\varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{x y}^{0} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{x y}\end{array}\right]$
© 2003, P. Joyce

Laminated Composite Analysis

$>$ The extensional stiffness matrix [A] relates the resultant inplane force to the in-plane strains.
$>$ The bending stiffness matrix [D] relates the resultant bending moments to the plate curvatures.
$>$ The coupling stiffness matrix [B] relates the force and moment terms to the midplane strains and midplane curvatures.

Laminate Special Cases

$>$ Symmetric: $[B]=0$
$>$ Load-deformation equation and moment-curvature relation decoupled.
$>$ Balanced: $\mathrm{A}_{16}=\mathrm{A}_{26}=0$.
$>$ Symmetric and Balanced:
$>$ Orthotropic with respect to inplane behavior.

$$
\begin{gathered}
{\left[\begin{array}{l}
N_{x} \\
N_{y}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{11} & A_{22}
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{x}{ }^{0} \\
\varepsilon_{y}{ }^{0}
\end{array}\right]} \\
N_{x y}=A_{66} \gamma_{x y}{ }^{0}
\end{gathered}
$$

© 2003, P. Joyce

Laminate Special Cases

$>$ Cross-Ply: $A_{16}=A_{26}=B_{16}=B_{26}=D_{16}=D_{26}=0$.
$>$ Some decoupling of the six equations.

$$
\begin{aligned}
& {\left[\begin{array}{l}
N_{x} \\
N_{y} \\
M_{x} \\
M_{y}
\end{array}\right]=\left[\begin{array}{llll}
A_{11} & A_{12} & B_{11} & B_{12} \\
A_{12} & A_{22} & B_{12} & B_{22} \\
B_{11} & B_{12} & D_{11} & D_{12} \\
B_{12} & B_{22} & D_{12} & D_{22}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}{ }^{0} \\
\kappa_{x}^{0} \\
\kappa_{y}^{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
N_{x y} \\
M_{x y}
\end{array}\right]=\left[\begin{array}{ll}
A_{66} & B_{66} \\
B_{66} & D_{66}
\end{array}\right]\left[\begin{array}{l}
\gamma_{x y}{ }^{0} \\
\kappa_{x y}{ }^{0}
\end{array}\right]}
\end{aligned}
$$

$>$ Orthotropic with respect to both inplane and bending behavior. © 2003, P. Joyce

Laminate Special Cases

> Symmetric Cross-Ply:
$>[\mathrm{B}]=0$
$>A_{16}=A_{26}=D_{16}=D_{26}=0$.
> Significant decoupling

$$
\begin{aligned}
{\left[\begin{array}{l}
N_{x} \\
N_{y}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{11} & A_{22}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0}
\end{array}\right] } & {\left[\begin{array}{l}
M_{x} \\
M_{y}
\end{array}\right]=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{11} & D_{22}
\end{array}\right]\left[\begin{array}{c}
\kappa_{x}^{0} \\
\kappa_{y}^{0}
\end{array}\right] } \\
N_{x y}=A_{66} \gamma_{x y}^{0} & M_{x y}=D_{66} \kappa_{x y}{ }^{0}
\end{aligned}
$$

> Orthotropic with respect to both inplane and bending behavior.

Laminated Composite Analysis

The following are steps for analyzing a laminated composite subjected to the applied forces and moments:

1. Find the values of the reduced stiffness matrix $\left[Q_{i j}\right]$ for each ply.
2. Find the value of the transformed reduced stiffness matrix $\left[Q_{x y}\right]$.
3. Find the coordinates of the top and bottom surfaces of each ply.
4. Find the 3 stiffness matrices $[A],[B]$, and $[D]$.
5. Calculate the midplane strains and curvatures using the 6 simultaneous equations (substitute the stiffness matrix values and the applied forces and moments).
6. Knowing the z location of each ply compute the global strains in each ply.
7. Use the stress-strain equation to find the global stresses.
8. Use the Transformation equation to find the local stresses and strains.

Laminate Compliances

$>$ Since multidirectional laminates are characterized by stress discontinuities from ply to ply, it is preferable to work with strains which are continuous through the thickness.
$>$ For this reason it is necessary to invert the loaddeformation relations and express strains and curvatures as a function of applied loads and moments.

Laminate Compliances

> Performing matrix inversions

$$
\begin{aligned}
& {\left[\begin{array}{c}
\varepsilon_{x}^{0} \\
\varepsilon_{y}^{0} \\
\gamma_{x y}^{0} \\
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right]=\left[\begin{array}{llllll}
a_{11} & a_{12} & a_{16} & b_{11} & b_{12} & b_{16} \\
a_{12} & a_{22} & a_{26} & b_{12} & b_{22} & b_{26} \\
a_{16} & a_{26} & a_{66} & b_{16} & b_{26} & b_{66} \\
c_{11} & c_{12} & c_{16} & d_{11} & d_{12} & d_{16} \\
c_{12} & c_{22} & c_{26} & d_{12} & d_{22} & d_{26} \\
c_{16} & c_{26} & c_{66} & d_{16} & d_{26} & d_{66}
\end{array}\right]\left[\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y} \\
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right]} \\
& \text { or in brief } \\
& {\left[\begin{array}{l}
\varepsilon^{0} \\
\kappa
\end{array}\right]=\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right]\left[\frac{N}{M}\right]}
\end{aligned}
$$

Laminate Compliances

> Where $[a],[b],[c]$, and $[d]$ are the laminate extensional, coupling, and bending compliance matrices obtained as follows.

$$
\begin{aligned}
& {[a]=[A]^{-1}-\left[B^{-1}\left[D^{0}\right]^{-1}\left[c^{c}\right]\right.} \\
& {[b]=\left[B^{-} \cdot D^{D}\right]^{1}} \\
& {[c]=-\left[D^{*}\right]^{-1}\left[C^{*}\right] \text { also }[c]=[b]^{T}} \\
& {[d]=\left[D^{*}\right]^{-1}} \\
& \text { and } \\
& {\left[B^{*}\right]=-[A]^{-[B]}} \\
& {\left[c^{*}\right]=\left[B[A]^{-1}\right.} \\
& {\left[D^{D}\right]=[D]-\left\{\left[B[A]^{-1}[B]\right.\right.}
\end{aligned}
$$

> NB: the compliances that relate midplane strains to applied moments are not identical to those that relate curvatures to in-plane loads.

© 2003, P. Joyce

Engineering Constants for a Multi-Axial Laminate

> From the laminate compliances we can compute the engineering constants -

$$
\begin{array}{lll}
\overline{E_{x}}=\frac{1}{h a_{x x}} & \overline{E_{y}}=\frac{1}{h a_{y y}} & \overline{G_{x y}}=\frac{1}{h a_{s s}} \\
\overline{v_{x y}}=-\frac{a_{y x}}{a_{x x}} & \overline{v_{y x}}=-\frac{a_{x y}}{a_{y y}} & \overline{\eta_{s x}}=\frac{a_{x s}}{a_{s s}} \\
\overline{\eta_{x s}}=\frac{a_{s x}}{a_{x x}} & \overline{\eta_{y s}}=\frac{a_{s y}}{a_{y y}} & \overline{\eta_{s y}}=\frac{a_{y s}}{a_{s s}}
\end{array}
$$

> As in UD lamina, symmetry implies

$$
\frac{\overline{v_{x y}}}{\overline{E_{x}}}=\frac{\overline{v_{y x}}}{\overline{E_{y}}}, \frac{\overline{\eta_{x s}}}{\overline{E_{x}}}=\frac{\overline{\eta_{s x}}}{\overline{G_{x y}}}, \frac{\overline{\eta_{y s}}}{\overline{E_{y}}}=\frac{\overline{\eta_{s y}}}{\overline{G_{x y}}}
$$

Engineering Constants for a Multi-Axial Laminate

> Computational Procedure for Determination of Engineering Elastic Properties

1. Determine the engineering constants of UD layer, E_{1}, E_{2}, v_{12}, and G_{12}.
2. Calculate the layer stiffnesses in the principal material axes, Q_{11}, Q_{22}, Q_{12}, and Q_{66}.
3. Enter the fiber orientation of each layer, k.
4. Calculate the transformed stiffnesses $[Q]_{x, y}$ of each layer, k.
5. Enter the through thickness coordinates of the layer surfaces.
6. Calculate the laminate stiffness matrices $[A]$, $[B]$, and $[D]$.
7. Calculate the laminate compliance matrix $[a]$.
8. Enter total laminate thickness, h.
9. Calculate the laminate engineering properties in global, x, y axes.

Laminated Composite Analysis

