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Stress Stress ––Strain Relations for an Strain Relations for an 
Isotropic BeamIsotropic Beam

Consider a prismatic beam of cross-section A under an applied axial load P.
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Assumes that the normal stress and strain are uniform and constant in the
beam and are dependent on the load P being applied at the centroid of
the cross-section.

One dimensional analysis
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Stress Stress ––Strain Relations for an Strain Relations for an 
Isotropic BeamIsotropic Beam

Consider the same  prismatic beam in a pure bending moment M.
The beam is assumed to initially straight and the applied loads pass through
a plane of symmetry to avoid twisting.
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Neglects transverse shear.
Assumes plane sections remain plane.
I s the second moment of area (often mistakenly referred to as the moment of inertia.)

M
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Stress Stress ––Strain Relations for an Strain Relations for an 
Isotropic BeamIsotropic Beam

Finally consider the beam under combined loading.
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Where ε0 is the strain at y = 0 (through the centroid), 
and κ = the curvature of the beam.

M
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StrainStrain--Displacement Equations Displacement Equations 
for an Anisotropic Laminatefor an Anisotropic Laminate

Use Classical Lamination Theory (CLT) to develop similar 
relationships in 3D for a laminate (plate) under combined 
shear and axial forces and bending and twisting moments.
The following assumptions are made to develop the 
relationships:

Each lamina is homogeneous and orthotropic
The laminate is thin and is loaded in plane only (plane stress)
Displacements are continuous and small throughout the laminate
Each lamina is elastic (stress-strain relations are linear)
No slip occurs between the lamina interfaces
Transverse shear strains are negligible
The transverse normal strain is negligible
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StrainStrain--Displacement Equations Displacement Equations 
for an Anisotropic Laminatefor an Anisotropic Laminate
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Consider the general case of a plate under in-plane shear and axial loading, 
as well as bending and twisting moments.
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Can derive the following
Strain-displacement equation:
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Strain and Stress in a LaminateStrain and Stress in a Laminate
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If the strains are known at any point along the thickness of the laminate, 
the stress-strain equation calculates the global stresses in each lamina
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The reduced transformed stiffness matrix, Qxy corresponds to that of the ply 
located at the point along the thickness of the laminate.



© 2003, P. Joyce

Strain and Stress in a LaminateStrain and Stress in a Laminate

Laminate Strain Variation Stress Variation

The stresses vary linearly only through the thickness of each lamina.
The stresses may jump from lamina to lamina since the transformed reduced 
stiffness matrix changes from ply to ply.
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Strain and Stress in a LaminateStrain and Stress in a Laminate

These global stresses can then be transformed to local 
stresses through the Transformation equation.
Likewise, the local strains can be transformed to global 
strains.
Can then be used in the Failure criteria discussed 
previously.
All that remains is how to find the midplane strains and 
curvatures of a laminate if the applied loading is known?
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Force and Moment ResultantsForce and Moment Resultants
The stresses in each lamina can be integrated to give resultant forces and 
moments (or applied forces and moments.)
Since the forces and moments applied to a laminate will be known, the 
midplane strains and plate curvatures can then be found.
Consider a laminate made of n plies as shown, each ply has a thickness tk.
The location of the midplane is h/2 from the top or bottom surface.
The z coordinate of each ply surface is given by 

h0 h/2
mid-planeh1

surface) (bottom  
2

  and  surface) (top  
2 110 thhhh −==
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Force and Moment ResultantsForce and Moment Resultants
Integrating the global stresses in each lamina gives the resultant 
forces per unit length in the x-y plane through the laminate 
thickness as
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Similarly, integrating the stresses in each lamina gives he resulting 
moments per unit length in the x-y plane through the thickness of 
the laminate.

zdzM

zdzM

dzzM

h

h
xyxy

h

h
yy

h

h
xx

∫

∫

∫

−

−

−

=

=

=

2/

2/

2/

2/

2/

2/

τ

σ

σ
Nx, Ny = normal force/unit length

Nxy = shear force/unit length

Mx, My = bending moment/unit length

Mxy = twisting moment/unit length
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Force and Moment ResultantsForce and Moment Resultants
In matrix form
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Force and Moment ResultantsForce and Moment Resultants

The resultant forces and moments can be written in terms 
of the midplane strains and curvatures
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Force and Moment ResultantsForce and Moment Resultants

Since the midplane strains and plate curvatures are 
independent of the z coordinate and the transformed 
reduced stiffness matrix is a constant for each ply —
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Force and Moment ResultantsForce and Moment Resultants
From the geometry (and a little calculus) we can solve the integrals
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Force and Moment ResultantsForce and Moment Resultants
Furthermore only the stiffnesses are unique for each layer, k.
Thus, [ε0]x,y and [κ]x,y can be factored outside the summation sign
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[A], [B], [D] are called the extensional, coupling, and bending 
stiffness matrices, respectively.
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Laminated Composite AnalysisLaminated Composite Analysis
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Combine into one general expression for laminate composite analysis 
relating the in-plane forces and moments to the midplane strains and 
curvatures —
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Laminated Composite AnalysisLaminated Composite Analysis

The extensional stiffness matrix [A] relates the resultant in-
plane force to the in-plane strains.
The bending stiffness matrix [D] relates the resultant 
bending moments to the plate curvatures.
The coupling stiffness matrix [B] relates the force and 
moment terms to the midplane strains and midplane 
curvatures.
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Laminate Special CasesLaminate Special Cases
Symmetric:  [B] = 0

Load-deformation equation and moment-curvature 
relation decoupled.

Balanced: A16 = A26 = 0.
Symmetric and Balanced:

Orthotropic with respect to inplane behavior.
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Laminate Special CasesLaminate Special Cases
Cross-Ply:  A16 = A26 = B16 = B26 = D16 = D26 =0.

Some decoupling of the six equations.

Orthotropic with respect to both inplane and bending behavior.
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Laminate Special CasesLaminate Special Cases
Symmetric Cross-Ply:  

[B] =0
A16 = A26 = D16 = D26 =0.
Significant decoupling

Orthotropic with respect to both inplane and bending behavior.
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Laminated Composite AnalysisLaminated Composite Analysis
The following are steps for analyzing a laminated composite subjected to the 

applied forces and moments:
1. Find the values of the reduced stiffness matrix [Qij] for each ply.
2. Find the value of the transformed reduced stiffness matrix [Qxy].
3. Find the coordinates of the top and bottom surfaces of each ply.
4. Find the 3 stiffness matrices [A], [B], and [D].
5. Calculate the midplane strains and curvatures using the 6 simultaneous equations 

(substitute the stiffness matrix values and the applied forces and moments).
6. Knowing the z location of each ply compute the global strains in each ply.
7. Use the stress-strain equation to find the global stresses.
8. Use the Transformation equation to find the local stresses and strains.
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Laminate CompliancesLaminate Compliances

Since multidirectional laminates are characterized by stress 
discontinuities from ply to ply, it is preferable to work with 
strains which are continuous through the thickness.
For this reason it is necessary to invert the load-
deformation relations and express strains and curvatures as 
a function of applied loads and moments.
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Laminate CompliancesLaminate Compliances
Performing matrix inversions
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Where [a], [b], [c], and [d] are the laminate extensional, coupling, and 
bending compliance matrices obtained as follows:
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NB: the compliances that relate midplane strains to applied moments are not 
identical to those that relate curvatures to in-plane loads.
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Engineering Constants for a Engineering Constants for a 
MultiMulti--Axial LaminateAxial Laminate

From the laminate compliances we can compute the 
engineering constants —
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As in UD lamina, symmetry implies —
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Engineering Constants for a Engineering Constants for a 
MultiMulti--Axial LaminateAxial Laminate

Computational Procedure for Determination of Engineering Elastic
Properties

1. Determine the engineering constants of UD layer, E1, E2, ν12, and G12.
2. Calculate the layer stiffnesses in the principal material axes, Q11, Q22, Q12, 

and Q66.
3. Enter the fiber orientation of each layer, k.
4. Calculate the transformed stiffnesses [Q]x,y of each layer, k.
5. Enter the through thickness coordinates of the layer surfaces.
6. Calculate the laminate stiffness matrices [A], [B], and [D].
7. Calculate the laminate compliance matrix [a].
8. Enter total laminate thickness, h.
9. Calculate the laminate engineering properties in global, x, y axes.



© 2003, P. Joyce

Laminated Composite AnalysisLaminated Composite Analysis


	Macromechanical Analysis of  Laminates
	Stress –Strain Relations for an Isotropic Beam
	Stress –Strain Relations for an Isotropic Beam
	Stress –Strain Relations for an Isotropic Beam
	Strain-Displacement Equations for an Anisotropic Laminate
	Strain-Displacement Equations for an Anisotropic Laminate
	Strain and Stress in a Laminate
	Strain and Stress in a Laminate
	Strain and Stress in a Laminate
	Force and Moment Resultants
	Force and Moment Resultants
	Force and Moment Resultants
	Force and Moment Resultants
	Force and Moment Resultants
	Force and Moment Resultants
	Force and Moment Resultants
	Laminated Composite Analysis
	Laminated Composite Analysis
	Laminate Special Cases
	Laminate Special Cases
	Laminate Special Cases
	Laminated Composite Analysis
	Laminate Compliances
	Laminate Compliances
	Laminate Compliances
	Engineering Constants for a Multi-Axial Laminate
	Engineering Constants for a Multi-Axial Laminate
	Laminated Composite Analysis

