Geomorphic Parameter References
-
Chapman, C.A, 1952. A new quantitative method of topographic analysis:
American Journal of Science, 250(6):428-452.
-
Clarke,
K.C., 1986, Computation of the fractal dimension of topographic surfaces
using the triangular prism surface area method: Computers & Geosciences,
vol.12, no.5, pp.713-722.
-
Curran,
P.J., 1988. The semivariogram in remote sensing: an introduction: Remote
Sensing of Environment, 24:493-507.
-
Drummond, R.R., and Dennis, H.W., 1968. Qualifying relief terms:
Professional Geographer,20(5):326-332.
-
Etzelmuller, B., 2000. On the quantification of surface changes using
grid-base digital elevation models (DEMs): Transactions in GIS,
4(2):129-143.
-
Evans, I.S., 1980. An integrated system of terrain analysis and slope
mapping: Zeitschrift für Geomorphologie N.F. Supplementband,
36:274-295.
-
Evans, I.S., 1998. What do terrain statistics really mean? in Lane, S.N.,
Richards, K.S., and Chandler, J.H., eds., Landform monitoring, modelling
and analysis. J.Wiley, Chichester, p.119-138.
-
Fisher,
N.L, Lewis, T., and Embleton, B.J.J., 1987. Statistical analysis of
spherical data: Cambridge University Press, 330 p.
-
Gallant, J.C., Moore, I.D., Hutchinson, M.F., and Gessler, P., 1994,
Estimating fractal dimension of profiles: A comparison of methods:
Mathematical Geology, Vol.26, No. 4, p. 455 – 481.
-
Guth, P.L., 1995. Slope and aspect calculations on gridded digital
elevation models: Examples from a geomorphometric toolbox for personal
computers: Zeitschrift für Geomorphologie N.F. Supplementband,
101:31-52.
-
Guth,
P.L., 2003. Terrain Organization Calculated From Digital Elevation Models:
in Evans, I.S., Dikau, R., Tokunaga, E., Ohmori, H., and Hirano, M., eds.,
Concepts and Modelling in Geomorphology: International Perspectives:
Terrapub Publishers, Tokyo, p.199-220. Online at
http://www.terrapub.co.jp/e-library/ohmori/pdf/199.pdf.
- Klinkenberg, B., 1994, A review of methods used to determine the fractal
dimension of linear features: Mathematical Geology, vol.26, no.1, p.23-46.
-
Klinkenberg, B.,
and Goodchild, M.F., 1992. The fractal properties of topography: a
comparison of methods: Earth Surface Processes and Landforms,
7(3):217-234.
-
Malinverno, A., 1995. Fractals and ocean floor topography: in Barton, C.C,
and LaPointe, P.R., eds., Fractals in the Earth Sciences, Plenum
Press, p.107-130.
-
Mark,
D.M., 1975. Geomorphometric parameters: A review and evaluation:
Geografiska Annaler, 57A(3-4):165-177.
-
McClean,
C.J., and Evans, I.S., 2000. Apparent fractal dimensions from continental
scale digital elevation models using variogram methods. Transactions in
GIS, 4(4):361-378.
-
Mueller, Jerry (1968). An Introduction to the
Hydraulic and Topographic Sinuosity Indexes: Annals of the Association of
American Geographers 58: 371.
doi:10.1111/j.1467-8306.1968.tb00650.x
-
Pike,
R.J., and Wilson, S.E., 1971. Elevation-relief ratio, hypsometric integral
and geomorphic area-altitude analysis: Geological Society of America
Bulletin, 82(4):1079-1084.
-
Pike, R.J., Evans, I.S., and Hengl, T.,
2009. Geomorphometry: A brief guide, In Hengl, T., Reuter, H.I. (eds),
Geomorphometry: concepts, software,
applications. Developments in
Soil Science Series, Elsevier, pp.1-30.
-
Press,
W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., 1986.
Numerical Recipes: The art of scientific computing: Cambridge University
Press, 818 p.
-
Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional
topography: Geological Society of America Bulletin, 63(11):1117-1142.
-
Strahler,
A. N. (1957), "Quantitative analysis of watershed geomorphology",
Transactions of the American Geophysical Union 8 (6): 913–920 .
-
Tate,NJ, 1998, Maximum entropy spectral analysis for the
estimation of fractals in topography: Earth Surface Processes and Landforms,
vol.23, p.1197-1217.
-
Wood, J.D., 1996. The geomorphological characterisation of
digital elevation models: unpublished PhD Thesis, University of Leicester,
UK.
-
Woodcock, N.H., 1977. Specification of fabric shapes using an eigenvalue
method: Geological Society of America Bulletin, vol. 88, no.9, p.1231-1236.
Parameter and index summaries
- Bartłomiej Szypuła, 2017, Digital Elevation Models in Geomorphology:
DOI: 10.5772/intechopen.68447 https://www.intechopen.com/chapters/55617
Last revision 12/11/2021