Notes on binomial prediction intervals and bounds

For SM230 purposes, we distinguish between prediction bounds (for integer random variables X_{max} & X_{min} in binp) and confidence bounds (for parameter p in binp). We make this distinction because we can directly observe the number of successes X, but not the overall (or population-wide) probability p.

Given known, constant p & N:

1. To find a one-sided lower prediction bound (LPB) for X, vary X_{min} while $X_{max} = N$, or
2. To find a one-sided upper prediction bound (UPB) for X, vary X_{max} while $X_{min} = 0$ until the cumulative probability distribution function CDF (= PROB) adds up to or just exceeds some preset value. Typically for one-sided prediction bounds we want $\text{PROB} = 0.9$.

Restated, for the LPB we want to be 90% certain (or a little more) that in N trials we’ll get at least X_{min} successes. For the UPB, we want to be 90% certain (or a little more) that in N trials we’ll get at most X_{max} successes. In Fig. 1 below, parameters $N = 20 & p = 0.65$, and the mean or expected number of successes $\mu = Np = 20*0.65 = 13$.

![Fig. 1](image_url)

To find the 90% LPB in Fig. 1, guess & test using $\text{binp}(0.65,20,20,x)$, & you find that $x=10 \rightarrow 0.94683$. Thus the 90% LPB for $X=10$, and by definition the corresponding upper prediction interval is $10 \leq X \leq 20$. ($\text{solve}(\text{binp}(0.65,20,20,x)=0.9,x)$ also works, but it’s very slow here.)

To find the 90% UPB in Fig. 1, guess & test using $\text{binp}(0.65,20,x,0)$, & you find that $x=16 \rightarrow 0.9556$. Thus the 90% UPB for $X=16$, and by definition the corresponding lower prediction interval is $0 \leq X \leq 16$. Conveniently, here the 90% two-sided prediction bounds are also $X_{min} = 10$, $X_{max} = 16$. In other words, $\text{binp}(0.65,20,16,10)=0.9025$, or we’re 90% certain that in N trials we’ll get 10–16 successes, inclusive. Note that in general the 90% one-sided & 90% two-sided prediction bounds aren’t the same.

Given known, constant p & an observed number of successes X:

3. To find a one-sided 90% LPB for N, set $X_{min} = 0$, $X_{max} = X$, and then increase N from X_{max} until PROB just decreases to 0.9 (or just above 0.9). Then the 90% LPB = N, or,
4. To find a one-sided 90% UPB for N, set $X_{min} = X$ and increase $X_{max} & N$ together until PROB just increases to 0.9 (or just above 0.9). Then the 90% UPB = N.

So if $p = 0.5 & X = 10$ successes, the 90% LPB for N is given by $\text{binp}(0.5,15,10,0) = 0.9408$, or LPB = 15. Interpret this result as “If $N = 15$, there’s a more than 90% chance that I’ll observe at most 10 successes.” Similarly, the 90% UPB for N here is given by $\text{binp}(0.5,26,26,10) = 0.9157$, or UPB = 26. Interpret this result as “If $N = 26$, there’s a more than 90% chance that I’ll observe at least 10 successes.”
Notes on binomial confidence bounds

To determine 90% lower & upper confidence bounds (LCB & UCB, respectively) for binomial \(p \), start by examining Fig. 2. The effect of increasing \(p \) is to shift the PDF’s peak toward higher \(X \). Conversely, decreasing \(p \) shifts the PDF’s peak toward lower \(X \). These shifts make sense, since as in Fig. 1, the mean or expected number of successes \(\mu = Np \) (\(N = 16 \) in Fig. 2). Thus decrease \(p \) and you decrease \(\mu \).

Now the goal is not to vary \(X_{\text{max}} \) or \(X_{\text{min}} \) while taking \(p \) as known. Instead, we use \(N, X_{\text{min}}, \) and \(X_{\text{max}} \) as statistical data to test whether some particular assumed value for \(p \) is likely.

If \texttt{binp} returns a small value (typically, \(\leq 0.1 \)) for an assumed \(p \) value, then this \(p \) was inconsistent with our data and we look for another, more consistent \(p \) value. Suppose we observe 12 successes in 16 trials. Figure 2 does not show this observed fact, but instead illustrates several possible binomial PDFs that result from assuming different \(p \) values for \(N = 16 \). These PDFs may or may not be consistent with our observations.

Given \(X \) successes and known, constant \(N \):

1. to find a one-sided 90% lower confidence bound (LCB), set \(X_{\text{max}} = N, X_{\text{min}} = X, \) & decrease \(p \) from 1 until PROB decreases to 0.1, or
2. to find a one-sided 90% upper confidence bound (UCB), set \(X_{\text{max}} = X, X_{\text{min}} = 0, \) & increase \(p \) from 0 until PROB increases to 0.1.

So to find the 90% LCB in Problem 3.7.11 (p. 3.24), calculate \texttt{solve(binp(p,16,16,12)=0.1,p)}

\[\rightarrow p = 0.5611 \]

Thus the 90% LCB for the coach’s overall \(p = 0.5611 \). Interpret this result as follows: “If \(p \) is as small as 0.5611, there is only a 10% chance that the coach can have 12 or more successes (wins) in 16 trials (games). If \(p \) were smaller, his probability of having 12 or more wins would be unacceptably small (PROB<0.1), so I conclude that the 90% LCB for \(p = 0.5611 \). In other words, I’m 90% confident he’ll win fewer than 12 of 16 games\(^\dagger\) if the unknown \(p = 0.5611 \).”

Similarly, to find the 90% UCB in Problem 3.7.11, calculate \texttt{solve(binp(p,16,12,0)=0.1,p)}

\[\rightarrow p = 0.8862 \]

Thus the 90% UCB for the coach’s overall \(p = 0.8862 \). Interpret this result as follows: “If \(p \) is as large as 0.8862, there is only a 10% chance that the coach can have 12 or fewer wins in 16 games. If \(p \) were larger, his probability of having 12 or fewer wins would be unacceptably small (PROB<0.1), so I conclude that the 90% UCB for \(p = 0.8862 \). In other words, I’m 90% confident that he’ll win more than 12 of 16 games if the unknown \(p = 0.8862 \).”

\(\dagger \) Recall that \(\texttt{binp(p,N,N,X+1)+binp(p,N,X,0)=1.0} \). Similarly, \(\texttt{poisson(}\lambda*\text{t,}\infty,X+1)+\texttt{poisson(}\lambda*\text{t,X,0})=1.0 \). Thus the best, most accurate substitute for \(\texttt{poisson(}\lambda*\text{t,}\infty,X+1) \) is \(1-\texttt{poisson(}\lambda*\text{t,X,0}) \) (e.g., \(\texttt{poisson(6,}\infty,10) = 1-\texttt{poisson(6,9,0)} = 0.08392 \)).