Simple Harmonic Motion

Displacement: $X(t) = X_m \cos(\omega t + \phi)$

- X_m = amplitude
- $(\omega t + \phi)$ = phase
- ω = angular frequency

Oscillations $\{ f, T \}$

Time

Cosine repeats every 2π: $\omega T = 2\pi$

Frequency: $f = \frac{\omega}{2\pi}$
The amplitudes are different, but the frequency and period are the same.

\[x(t) = x_m \cos (\omega t + \phi) \]

This negative value shifts the cosine curve rightward.

This zero gives a regular cosine curve.
\(x(t) = x_m \cos(\omega t + \phi) \)

\(v(t) = \frac{dx(t)}{dt} \)

\(a(t) = \frac{dv(t)}{dt} \)
Simple Harmonic Motion: Restoring Force

An example

\[k \]

\[-x_n \quad 0 \quad +x_n \]

\[\text{no friction} \]

\[\overrightarrow{F} = \overrightarrow{ma} \]

\[\text{Diff. Eq.:} \]

\[-kx = m \frac{d^2x}{dt^2} \]

\[\frac{d^2x}{dt^2} = -\frac{k}{m}x \implies \text{what is only smooth function} \]

\[\text{s.t.} \quad \frac{d^2f(t)}{dt^2} = f(t) \]

\[\Rightarrow \text{Spring undergoes SHM!} \]

\[-kx = ma = m(-\omega^2x) \]

so \[k = m\omega^2 \]

\[\omega = \sqrt{\frac{k}{m}} \]

\[T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{m}{k}}} \]

Period of a SHM (spring)
Energy in SHM (Spring Example)

\[K(t) = \text{kinetic energy} = \frac{1}{2} m \left[v(t) \right]^2 \]
\[U(t) = \text{stored spring energy} = \frac{1}{2} k \left[x(t) \right]^2 \]

So:

\[K(t) = \frac{1}{2} m \omega^2 x_m^2 \sin^2 (\omega t + \phi) = \frac{1}{2} k x_m^2 \sin^2 (\omega t + \phi) \]
\[U(t) = \frac{1}{2} k x_m^2 \cos^2 (\omega t + \phi) \]

Total Energy:

\[E = K + U \]
\[= \frac{1}{2} k x_m^2 \left[\sin^2 (\omega t + \phi) + \cos^2 (\omega t + \phi) \right] \]
\[E = \frac{1}{2} k x_m^2 \]

As time changes, the energy shifts between the two types, but the total is constant.

As position changes, the energy shifts between the two types, but the total is constant.