A beam of electrons are traveling perpendicular to a uniform magnetic field with magnitude 0.005 T, directed into the page ($e=1.6 \times 10^{-19}$ C, $m_e=9.1 \times 10^{-31}$ kg).

a. Sketch the path of the electron.

b. If the potential difference between plates (ΔV) is 200 V, what is the kinetic energy of electrons in the beam entering the magnetic field?

$$U = q \Delta V = (1.6 \times 10^{-19} \text{C})(200 \text{V})$$

$$= 3.2 \times 10^{-17} \text{J}$$

c. What is the speed of the electrons entering the magnetic field?

$$\frac{1}{2}mv^2 = 3.2 \times 10^{-17} \text{J}$$

$$v = \sqrt{\frac{2(3.2 \times 10^{-17} \text{J})}{9.1 \times 10^{-31} \text{kg}}} = 8.39 \times 10^6 \text{ m/s}$$

d. If the magnetic field has strength of 1.59×10^{-3} T, what is the radius of the electron’s path?

$$\frac{mv^2}{r} = qvB \implies r = \frac{mv}{qB} = \frac{(9.1 \times 10^{-31} \text{kg})(8.39 \times 10^6 \text{ m/s})}{(1.6 \times 10^{-19} \text{C})(1.59 \times 10^{-3} \text{T})}$$

$$= 3 \times 10^{-2} \text{ m}$$

$$\approx 3 \text{ cm}$$