1. A long straight wire is in the plane of a rectangular conducting loop. The straight wire carries an increasing current in the direction shown. The current in the rectangle is:

A) zero
B) clockwise
C) counterclockwise
D) clockwise in the left side and counterclockwise in the right side
E) counterclockwise in the left side and clockwise in the right side

2. A circular loop of wire is positioned half in and half out of a square region of constant uniform magnetic field directed into the page, as shown. To induce a clockwise current in this loop:

A) move it in +x direction
B) move it in −y direction
C) move it in −x direction
D) move it in +y direction
E) increase the strength of the magnetic field

3. You push a permanent magnet with its north pole away from you toward a loop of conducting wire in front of you. Before the north pole enters the loop the current in the loop is:

A) zero
B) clockwise
C) counterclockwise
D) to your left
E) to your right

4. For a short time after the switch is closed, the current through resistor R is:

A. To the left
B. To the right
C. Zero

5. As the magnet is moved toward the coil, the current through resistor R is:

A. To the left
B. To the right
C. Zero