Part III: Applications of Newtonian Mechanics
Chapter 12: Rotation of a Rigid Body

12.3 Rotational Energy (continued)
12.4 Calculating Moment of Inertia
\[I = \int r^2 \, dm \]

\[K_{\text{rot}} = \frac{1}{2} I \omega^2 \]

TABLE 12.2 Moments of inertia of objects with uniform density

<table>
<thead>
<tr>
<th>Object and axis</th>
<th>Picture</th>
<th>(I)</th>
<th>Object and axis</th>
<th>Picture</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin rod, about center</td>
<td></td>
<td>(\frac{1}{12} ML^2)</td>
<td>Cylinder or disk, about center</td>
<td></td>
<td>(\frac{1}{2} MR^2)</td>
</tr>
<tr>
<td>Thin rod, about end</td>
<td></td>
<td>(\frac{1}{3} ML^2)</td>
<td>Cylindrical hoop, about center</td>
<td></td>
<td>(MR^2)</td>
</tr>
<tr>
<td>Plane or slab, about center</td>
<td></td>
<td>(\frac{1}{12} Ma^2)</td>
<td>Solid sphere, about diameter</td>
<td></td>
<td>(\frac{2}{5} MR^2)</td>
</tr>
<tr>
<td>Plane or slab, about edge</td>
<td></td>
<td>(\frac{1}{3} Ma^2)</td>
<td>Spherical shell, about diameter</td>
<td></td>
<td>(\frac{2}{3} MR^2)</td>
</tr>
</tbody>
</table>
Two ways we encounter rotational energy.

Fixed axle: rotation about the axle, that tells the entire story (just ω).

- $K = K_{\text{rot}}$
- $K = \frac{1}{2}I\omega^2$

Unconstrained: rotational and linear motion combined (ω and v_{cm}). Examples:

1. A thrown object’s center of mass arcs through space like a projectile while the object spins around its center of mass.
2. A bowling bowl early in its path down the lane. The spinning of the ball is decoupled from it’s linear motion (kinetic friction).
3. A bowling ball late in its path: rolling without slipping (static friction, $v_{\text{cm}} = r\omega$).

- $K = K_{\text{rot}} + K_{\text{cm}}$
- $K = \frac{1}{2}I\omega^2 + \frac{1}{2}Mv_{\text{cm}}^2$
Disk about center

\[I = \int (r^2 \ast dm) \]

\[I = \int_0^R \left(r^2 \ast M \left(\frac{2\pi r \ast dr}{\pi R^2} \right) \right) \]

\[I = \frac{2M}{R^2} \int_0^R r^3 \, dr \]

\[I = \frac{2M}{R^2} \ast \frac{R^4}{4} \]

\[I = \frac{1}{2} MR^2 \]
For you to do:

1. Work through this to show that $I = \frac{1}{3}ML^2$ for a thin rod about its end.

2. Alter and rework the integral to show $I = \frac{1}{12}ML^2$ for a thin rod about its center.

3. Show a connection between these results and the parallel axis theorem,

$$I_{\text{off-center axis}} = I_{\text{cm}} + Md^2 = Md^2 + I_{\text{cm}}$$

where d is the (center of mass)\rightarrow(off-center axis) distance.

4. Also show a connection between these results by viewing the “about the center” case as two “half rods” about their ends.