----- Problem 1 ----- The terminal speed of an object falling through a medium is the speed at which $m\vec{g}$ and the drag force add together vectorially to give $\vec{F}_{net} = 0$.

- Work out an expression for v_{terminal} in terms of the parameters that appear in the quadratic model for air drag, m, and g.

----- Problem 2 ----- Skydiver A in a particular orientation has a terminal speed of 60 m/s. Skydiver B is identical to skydiver A in all respects except one: their masses differ.

- If B’s mass is twice that of A’s, what is the terminal speed of skydiver B?
- How do the masses of B and A compare if B’s terminal speed is twice that of A’s?

----- Problem 3 ----- A car is attempting to round an icy unbanked turn that lies in the horizontal plane. The radius of the turn is 21 m and the coefficient of static friction between the tire’s rubber and the ice on the road is 0.15.

- What is the safest maximum speed around this turn?

----- Problem 4 ----- A tetherball of mass m is observed to circulate around a pole. The cord is of length L and it makes an θ with respect to the vertical pole.

- Find the speed of the ball and the tension in the cord in terms of m, L, θ, and g.