----- Problem 1 ----- $F_A = 24 \text{ N at } 2.9 \text{ m. } F_B = 32 \text{ N at } 2.1 \text{ m. } F_C = 18 \text{ N at } 1.7 \text{ m.}$ The rotational inertia I of the object is 3.9 kg m^2.

- What is the net torque on this object?
- What is the angular acceleration α at this instant?

----- Problem 2 ----- The right side seesaw is instantaneously angled at 18° above the horizontal. On the left side, a 48 kg point mass sits 1.3 m from the pivot. On the right, a 39 kg point mass sits 1.7 m from the pivot. The plank’s mass is negligible.

- What is the angular acceleration α of this seesaw at this instant?

Answers
1. $\tau_{\text{net}} = -7.51955 \text{ N m (CW)}, \alpha = -1.9281 \text{ rad/s}^2 \text{ (CW)}$
2. $\alpha = -0.1875 \text{ rad/s}^2 \text{ (CW)}$