Suppose we wish to solve the following equation for \(x \),

\[
e^{ax} = bx + c
\]
given values of \(a, b, \) and \(c \). This equation can be rewritten as

\[
b(x + c/b)e^{-ax} = 1 \quad \Rightarrow \quad (-ax - ac/b)e^{-ax-ac/b} = -\frac{a}{b} e^{-ac/b}.
\]

So if we define two new variables

\[
z = -\frac{a}{b} e^{-ac/b} \quad \text{and} \quad W = -ax - ac/b
\]

then the equation becomes

\[
We^W = z
\]

whose inverse \(W(z) \) defines the Lambert \(W \) function. Thus the solution to Eq. (1) is

\[
x = -c/b - \frac{1}{a} \left(-\frac{a}{b} e^{-ac/b} \right).
\]

So to finish the problem, we need that function. One way to get it is graphically. Simply compute \(z(W) \) for a range from large negative to large positive values and plot it in Excel as \(W \) versus \(z \). That results in the following graph.
One sees that the function has two branches: the upper red one with domain $z \geq -1/e \approx -0.36788$ and range $W \geq -1$, and the lower blue one with domain $-1/e \leq z < 0$ and range $W \leq -1$.

For example, suppose one wishes to solve

$$e^x = 2x + 3$$

so that $a = 1$, $b = 2$, and $c = 3$. Then there are two solutions, given by

$$x = -1.5 - W\left(-0.5e^{1.5}\right) \approx -1.5 - W\left(-0.111565\right).$$

(7)

By trial and error in Excel one finds that

$$W\left(-0.111565\right) \approx \begin{cases} -3.42394 & \text{for blue branch} \\ -0.236625 & \text{for red branch} \end{cases}$$

(8)

so that

$$x \approx 1.92394 \text{ or } -1.373375.$$

(9)

Another way to get the solution is using software such as WolframAlpha where the solutions are

$$x = -1.5 - \text{ProductLog}\left[-0.5e^{1.5}\right]$$

(10)

for the principal red branch, and

$$x = -1.5 - \text{ProductLog}\left[-1-0.5e^{1.5}\right]$$

(11)

for the fully negative blue branch.