A 1D Taylor series for the function \(f(y) \) expanded about the point \(y_0 \) is

\[
f(y) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n f}{dy^n} \bigg|_{y=y_0} (y - y_0)^n.
\]

(1)

Although \(y_0 \) is normally considered a constant, this formula is valid for any \(y_0 \) and so we can certainly treat it as a variable \(x \). Notice that the derivative is therefore of the function with respect to its argument and is then evaluated at \(x \). For brevity, we can therefore write it as \(f^{(n)}(x) \).

Equation (1) can therefore be rewritten as

\[
f(y) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (y - x)^n.
\]

(2)

We now let \(y \equiv x + h(x) \) to obtain the desired series,

\[
f(x + h) = \sum_{n=0}^{\infty} \frac{h^n}{n!} f^{(n)}(x) .
\]

(3)

Proper convergence of this series for given functions \(f(y) \) and \(h(x) \) should be checked using a standard method such as the ratio test.

As an example of the application of this result, suppose that \(f(y) = y^{-1} \) and that \(h(x) = e^x \).

Noting that

\[
f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}},
\]

(4)

Eq. (3) becomes

\[
\frac{1}{x + e^x} = \sum_{n=0}^{\infty} \frac{(-1)^n e^{nx}}{x^{n+1}} .
\]

(5)

It is easy to verify that this result is correct. Multiplying both sides by \(x \) we get

\[
\frac{1}{1 + e^x / x} = \sum_{n=0}^{\infty} \left(-\frac{e^x}{x} \right)^n
\]

(6)

which then becomes immediately recognizable as a geometric series, convergent provided \(e^x < |x| \) which is true for approximately \(x < -0.57 \).

If one substitutes \(h(x) \equiv g(x) - x \) into Eq. (3), one obtains
\[f(g(x)) = \sum_{n=0}^{\infty} \frac{(g-x)^n}{n!} f^{(n)}(x). \]

(7)

For example, if \(g(x) = \sin x \) and \(f(y) = \sin y \), then since

\[f^{(n)}(x) = \begin{cases} (-1)^{n/2} \sin x & \text{if } n = 0, 2, 4, \\ (-1)^{(n-1)/2} \cos x & \text{if } n = 1, 3, 5, \ldots \end{cases}, \]

(8)

it follows that

\[
\sin(\sin x) = \sin x + (\sin x - x) \cos x - \frac{1}{2} (\sin x - x)^2 \sin x - \frac{1}{6} (\sin x - x)^3 \cos x + \cdots
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} [(2n+1) \sin x + (\sin x - x) \cos x] (\sin x - x)^{2n}
\]

(9)

so that Eq. (7) can be used to derive some unusual identities.