An Induction Proof for Prime Numbers—C.E. Mungan, Fall 2004

Prove that there exists some non-negative integer m such that $n^p - n = mp$ where n is any positive integer and p is any prime number.

1. Claim is true for $n = 1$. Namely $m = 0$.

2. Assume claim is true for n, ie. $n^p = pm + n$ for some integer m.

3. Now prove that it holds for $n + 1$, i.e., show that $(n + 1)^p - (n + 1)$ is divisible by p. Using the binomial expansion, this expression becomes

$$n^p + \sum_{i=1}^{p-1} \frac{p!}{i!(p-i)!} n^i + 1 - n - 1$$

Substitute in claim 2 for the first term and simplify to get

$$pm + \sum_{i=1}^{p-1} \frac{p!}{i!(p-i)!} n^i$$

The proof is now complete if we can show that every binomial coefficient in this summation is divisible by p. First verify that this is true for the special cases of p equaling 2 or 3. For $p=2$, we have only one binomial coefficient, equal to 2, which is clearly divisible by 2. For $p=3$, we have two binomial coefficients, both of which are equal to 3, divisible by 3.

So we can now restrict ourselves to the case of $p \geq 5$. In that case, the binomial coefficient for i equaling 1 or $p-1$ is p, which is evidently divisible by p. So we are only left with the binomial coefficients for $2 \leq i \leq p-2$. An arbitrary coefficient in this range is

$$p \times \frac{(p-1)\times \cdots \times (p-i+1)}{i!}$$

Both the quantity in the square brackets and the denominator $i!$ are integers greater than or equal to 2. Since p is prime, $i!$ cannot divide it. Thus $i!$ must divide the integer in square brackets because the binomial coefficient itself is an integer. Therefore this coefficient is p times an integer, and is thereby divisible by p. QED

As an application, this result proves Fermat’s Little Theorem. Specifically, we have $n^{p-1} = 1 + pm / n$. But $pm / n = n^{p-1} - 1$ is an integer. Since p is prime, n must thereby divide m. It therefore follows that $n^{p-1} = 1 (mod p)$.