The Van der Waals Equation of State—C.E. Mungan, Spring 2000

The ideal gas law is

\[p\nu = RT \] \hspace{1cm} (1)

where \(\nu \equiv V/n \) is the molar volume. To obtain the van der Waals equation, we need to modify the pressure and volume. Long-range attractive forces between molecules tend to keep them closer together than ideal gas molecules. This has the effect of a compression of the gas and hence a positive term is added to the pressure. You may alternatively wish to note that if you solve Eq. (2) below for the pressure \(p \) on the container walls, it is smaller than it is when \(a \) is zero. On the other hand, short-range repulsive forces keep the molecules from simultaneously occupying the same place and thus the available volume of the gas decreases. The proposed empirical form of the modified equation is

\[(p + a/\nu^2)(\nu - b) = RT. \] \hspace{1cm} (2)

In the present note, I remind one of how to roughly derive expressions for the positive constants \(a \) and \(b \) in terms of molecular parameters.

There are \(N(N - 1)/2 \equiv 1/2 \cdot N^2 \) pairs of molecules. Any given pair of molecules cannot lie closer together than \(2R \) if \(R \) is the molecular radius. Thus, each pair of molecules is excluded from a volume of \(\frac{1}{2}\pi(2R)^3 = 8V_{\text{molecule}} \) and hence the total excluded volume is \(4N^2V_{\text{molecule}} \). But according to Eq. (2), the excluded volume per molecule is \(nb = Nb/N_A \), where \(N_A \) is Avogadro’s number. Thus the total excluded volume can be alternatively written as \(N^2b/N_A \).

Equating this to the preceding expression for the total excluded volume gives

\[b = 4N_AV_{\text{molecule}}. \] \hspace{1cm} (3)

A common approximation uses the fact that in the liquid state the molecules are close but not quite touching, so that \(b \) is roughly equal to the molar volume of the liquid.

Now, from the first law of thermodynamics we have

\[dE = TdS - pdV \Rightarrow p = -\frac{\partial E}{\partial V}|_S \] \hspace{1cm} (4)

where the internal PE of the gas (excluding the KE which gives the ideal gas law terms via kinetic theory) is \(E \equiv \frac{1}{2} N^2 \overline{E_{\text{pair}}} \) using the same line of reasoning as above. The standard Lennard-Jones pairwise potential between two molecules is

\[E_{\text{pair}} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]. \] \hspace{1cm} (5)

It is easy to show that this has a minimum value of \(-\varepsilon \) at \(r_{\text{min}} = 2^{1/6}\sigma \). The term to the 12th power in this expression is an \textit{ad hoc} approximation to the short-range repulsion between two molecules. It is mathematically simpler to instead model this by an infinite hard-core repulsion at
\(r = 2R \) when the two molecules are in physical contact,

\[
E_{\text{pair}} = \begin{cases}
\infty & \text{for } r < 2R \\
-E_0 \left(\frac{2R}{r} \right)^6 & \text{for } r > 2R
\end{cases}
\]

(6)

where I have retained the \(r^{-6} \) dipole-dipole attractive energy. The origin of this term can be understood as follows. Consider two molecules with no permanent dipole moment separated by a distance \(r \). Because of fluctuations, at some instant in time the first molecule may have a dipole moment \(p_1 \), producing an electric field \(E_1 \propto p_1 / r^3 \) at the location of the second molecule. This will induce a dipole moment in this second molecule of magnitude \(p_2 = \alpha E_1 \propto p_1 / r^3 \) where \(\alpha \) is the molecular polarizability. In turn, this produces an electric field \(E_2 \propto p_2 / r^3 \propto p_1 / r^6 \) back at the location of the first molecule. Hence the interaction energy between these two dipoles is \(p_1 E_2 \propto p_1^2 / r^6 \), which unlike \(p_1 \) does not time average to zero.

If we require Eqs. (5) and (6) to agree at their minima, then we must identify \(2^{1/6} \sigma = 2R \) and \(\varepsilon = E_0 \). Next, we compute

\[
\overline{E_{\text{pair}}} = \int_{2R}^{\infty} E_{\text{pair}}(r) P(r)dr
\]

(7)

where the probability of finding another molecule at a center-to-center distance of between \(r \) and \(r+dr \) from any given one is approximately

\[
P(r)dr = \frac{4\pi r^2 dr}{V},
\]

(8)

since the molecules are almost free and thus randomly distributed throughout the available volume. Substituting Eqs. (6) and (8) into (7) and performing the integral results in

\[
\overline{E_{\text{pair}}} = 8E_0 \frac{V_{\text{molecule}}}{V}.
\]

(9)

Putting this into Eq. (4) to obtain the extra pressure \(a/v^2 \) in Eq. (2) and using Eq. (3) gives

\[
a = E_0 N_A b.
\]

(10)

Expressing the van der Waals parameters in terms of the Lennard-Jones parameters, we thus have

\[
a = 2^{1/3} \sqrt{2} \pi \sigma^3 N_A^2 \varepsilon \quad \text{and} \quad b = 2^{1/3} \sqrt{2} \pi \sigma^3 N_A.
\]

(11)

If these are checked against the experimental values listed below, ballpark agreement is found.

<table>
<thead>
<tr>
<th>Gas</th>
<th>(a) (mPa•m⁶/mol³)</th>
<th>(b) (mL/mol)</th>
<th>(\varepsilon) (meV)</th>
<th>(\sigma) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>3.44</td>
<td>23.6</td>
<td>0.87</td>
<td>2.56</td>
</tr>
<tr>
<td>Ne</td>
<td>21.1</td>
<td>16.9</td>
<td>3.1</td>
<td>2.74</td>
</tr>
</tbody>
</table>