SP 212 Worksheet
Lesson 26: Ch. 30.2, Induction & Energy Transfer

1) A metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude $B = 0.50 \text{T}$ points out of the page. (a) If the rails are separated by $L = 20 \text{ cm}$ and the speed of the rod is $v = 58 \text{ cm/s}$, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 18Ω and the rails and connector have negligible resistance, what is the current in amperes in the rod? (c) At what rate is energy being transferred to thermal energy?

Hint: Remember that $P = \vec{F} \cdot \vec{v}$, and that power is a rate of energy transfer!

2) A long rectangular conducting loop of width $L = 13 \text{ cm}$, resistance $R = 9.2 \Omega$, and mass $m = 0.12 \text{ kg}$, is hung in a horizontal, uniform magnetic field of magnitude 1.4T that is directed into the page and that exists only above the horizontal dashed line. The loop is then dropped; during its fall, it accelerates until it reaches a certain terminal speed v_t. Ignoring air drag, find the terminal speed.

Hint: At the terminal speed, $\vec{F}_{\text{net}} = 0!$