1) The ring shown below has radius R and uniformly distributed charge Q. The z-axis is perpendicular to the plane of the ring, and goes through its center. What is the magnitude of the electric field at (a) $z = 0$, and (b) $z = \infty$? (c) In terms of R, at what positive value of z is the magnitude maximum?

*Hint: For part (c), you need to find the value of z at which $dE/dz = 0$."

2) Suppose the thin rod shown below has uniformly distributed charge $+Q$. (a) What is the magnitude and direction of the E-field produced at point P? Give your answer in terms of L and R. (b) Suppose the rod has linear charge density $\lambda = Q/L$, and is infinitely long. What is the magnitude and direction of the E-field produced at point P? Give your answer in terms of λ and R.

*Hint: The x-components of the E-fields due to tiny charge elements $dq = \lambda dx$ all cancel after adding them up (or integrating)."