SP212 Quiz 6

Name: Dr. Wilson

1) In the figure below, $R_1 = 2.0 \, \Omega$, $R_2 = 4.5 \, \Omega$, and $R_3 = 1.5 \, \Omega$. What is the equivalent resistance between points D and E?

\[\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2.0 \, \Omega} + \frac{1}{4.5 \, \Omega} = 0.72 \, \Omega \]

a) 2.1 Ω
b) 2.4 Ω
c) 2.9 Ω
d) 3.2 Ω
e) 3.5 Ω

For whole network, $R_{eq} = 1.38 \, \Omega + 1.5 \, \Omega = 2.9 \, \Omega$

2) In this circuit shown below, $R = 55 \, \Omega$ and $C = 2.0 \, \text{mF}$. If the capacitor is uncharged when the switch is closed, how long does it take for the capacitor to reach 75% of its maximum charge?

\[Q_{max} = C \cdot \varepsilon \]

\[Q = \frac{3}{4} \Rightarrow Q_{max} = \frac{3}{4} \cdot C \cdot \varepsilon = C \cdot \varepsilon \cdot (1 - e^{-t/RC}) \]

\[\frac{3}{4} = 1 - e^{-t/RC} \]

Solving for t in calculator...

\[t = 0.15 \, \text{s} \]