57. A pitot tube (Fig. 15-44) is used to determine the airspeed of an airplane. It consists of an outer tube with a number of small holes B (four are shown) that allow air into the tube; that tube is connected to one arm of a U-tube. The other arm of the U-tube is connected to hole A at the front end of the device, which points in the direction the plane is headed. At A the air becomes stagnant so that $v_A = 0$. At B, however, the speed of the air presumably equals the airspeed v of the aircraft. (a) Use Bernoulli’s equation to show that

$$v = \sqrt{\frac{2
ho h}{\rho_{MW}}}$$

where ρ is the density of the liquid in the U-tube and h is the difference in the fluid levels in that tube. (b) Suppose that the tube contains alcohol and indicates a level difference h of 26.0 cm. What is the plane’s speed relative to the air? The density of the air is 1.03 kg/m3 and that of alcohol is 810 kg/m3.

![Fig. 15-44 Problems 57 and 58.](image)

48E. A water intake at a pump storage reservoir (Fig. 15-39) has a cross-sectional area of 0.74 m2. The water flows in at a speed of 0.40 m/s. At the generator building 180 m below the intake point, the cross-sectional area is smaller than at the intake and the water flows out at 9.5 m/s. What is the difference in pressure, in megapascals, between inlet and outlet?

22. The legendary Dutch boy who saved Holland by placing his finger in the hole of a dike had a finger 1.20 cm in diameter. Assuming the hole was 2.00 m below the surface of the sea (density 1030 kg/m3), (a) what was the force on his finger? (b) If he removed his finger from the hole, how long would it take the released water to fill 1 acre of land to a depth of 1 foot, assuming the hole remained constant in size? (A typical U.S. family of four uses 1 acre-foot of water, 1234 m3, in 1 year.)

48E. Air flows over the top of an airplane wing of area A with speed v_1 and past the underside of the wing (also of area A) with speed v_2. Show that in this simplified situation Bernoulli’s equation predicts that the magnitude L of the upward lift force on the wing will be

$$L = \frac{1}{2} \rho A (v_1^2 - v_2^2)$$

where ρ is the density of the air.