We want to find the distance from the center of the Earth to the center of the Moon. We can use the formula:

\[F = \frac{GMm}{r^2} \]

where \(F \) is the force, \(G \) is the gravitational constant, \(M \) is the mass of one object, \(m \) is the mass of the other object, and \(r \) is the distance between the centers of the two objects.

First, notice that forces \(F_1 \) and \(F_3 \) will cancel because they have the same magnitude and opposite direction.

\[F_1 = F_3 = \frac{GM_1 M_3}{r_1^2} \]

Then, we have:

\[F_2 = F_4 \]

This gives us:

\[\frac{F_2}{F_3} = \frac{\cos 45^\circ \hat{i} + \cos 45^\circ \hat{j}}{\cos 45^\circ \hat{i} - \cos 45^\circ \hat{j}} \]

\[\hat{e} = \hat{F}_2 + \hat{F}_3 = 1.18 \times 10^{-11} \hat{i} + 1.18 \times 10^{-11} \hat{j} \]

Now, we can calculate the distance using the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

Finally, we have:

\[F = \frac{GM_1 M_3}{r^2} \]

where \(F \) is the force, \(G \) is the gravitational constant, \(M_1 \) is the mass of the Earth, \(M_3 \) is the mass of the Moon, and \(r \) is the distance between the centers of the two objects.

So, we can calculate the distance using the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

We can use the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

Finally, we have:

\[F = \frac{GM_1 M_3}{r^2} \]

where \(F \) is the force, \(G \) is the gravitational constant, \(M_1 \) is the mass of the Earth, \(M_3 \) is the mass of the Moon, and \(r \) is the distance between the centers of the two objects.

So, we can calculate the distance using the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

We can use the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

Finally, we have:

\[F = \frac{GM_1 M_3}{r^2} \]

where \(F \) is the force, \(G \) is the gravitational constant, \(M_1 \) is the mass of the Earth, \(M_3 \) is the mass of the Moon, and \(r \) is the distance between the centers of the two objects.

So, we can calculate the distance using the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

We can use the formula:

\[r = \frac{GM}{F} \]

where \(r \) is the distance from the center of the Earth to the center of the Moon, \(G \) is the gravitational constant, \(M \) is the mass of the Earth, and \(F \) is the force.

Finally, we have:

\[F = \frac{GM_1 M_3}{r^2} \]

where \(F \) is the force, \(G \) is the gravitational constant, \(M_1 \) is the mass of the Earth, \(M_3 \) is the mass of the Moon, and \(r \) is the distance between the centers of the two objects.
d) Escape Speed

\[KE_{e} = 0 \quad U = -G \frac{M}{r} \]

\[\frac{1}{2} m v_e^2 + \left(-G \frac{M}{r} \right) = 0 \]

\[v_e = \sqrt{\frac{2GM}{r}} \]

\[v_e = 1.33 \times 10^3 \text{ m/s} = 1.73 \text{ km/s} \]

b) How high will it go if \(v_e = 1800 \text{ m/s} \)

\[v_f = \sqrt{\frac{G M}{r}} \]

\[v_f = 7.5 \times 10^5 \text{ m/s} = 750 \text{ km} \]

or 250 km above surface

13.40 Each escape speed is 11.2 km/s

To determine expressions for escape speed:

\[\frac{v_e}{R} \]

\[KE_{e} = \frac{1}{2} m v_e^2 \]

\[KE_{e} = G \frac{m M}{R} \]

\[\frac{1}{2} m v_e^2 = G \frac{m M}{R} \]

\[r_f = \frac{3}{2} R_E \]

\[KE_{e} = \frac{1}{2} KE_{escape} \]

So

\[\frac{1}{4} KE_{escape} - G \frac{m M}{R_E} = -G \frac{m M}{R_f^2} \]

\[\frac{1}{4} G \frac{m M}{R_E} - G \frac{m M}{R_f^2} = -G \frac{m M}{R_f^2} \]

\[\frac{3}{4} G \frac{m M}{R_E} = -G \frac{m M}{R_f^2} \]

\[r_f = \frac{3}{2} R_E \]

b) \(KE_i = \frac{1}{2} KE_{escape} \)

So

\[\frac{1}{2} KE_{escape} - G \frac{m M}{R_E} = -G \frac{m M}{R_f^2} \]

\[\frac{1}{2} G \frac{m M}{R_E} - G \frac{m M}{R_f^2} = -G \frac{m M}{R_f^2} \]

\[-\frac{1}{2} G \frac{m M}{R_E} = -G \frac{m M}{R_f^2} \]

\[r_f = 2R_E \]

c) Tricky wording.

Because Mechanical Energy = KE + Pot'VE

the answer is 2R_E
13.43

Do FBD for the circular motion

\[m \cdot \frac{v^2}{r} = \sum F_{\text{cent}} \]

\[m \cdot \frac{v^2}{r} = G \frac{M}{r^2} \]

\[v^2 = G \frac{M}{r} = \left(\frac{6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{2 \times 10^7 \text{ m}} \right) \]

\[v = 7.80 \times 10^3 \text{ m/s} = 7.8 \text{ km/s} \]

Period:

\[v = \frac{2 \pi r}{T} \]

\[7.80 \times 10^3 = \frac{2 \pi (6.53 \times 10^8)}{T} \]

\[T = 5.26 \times 10^3 \text{ sec} = 1.46 \text{ hrs} \]

13.45

\[r = 9.4 \times 10^6 \text{ m} \]

\[T = 7.39 \text{ hrs} = 2.73 \times 10^4 \text{ sec} \]

We could just start with Kepler's 2-3 Rule

\[T^2 = \frac{4 \pi^2}{G M} r^3 \]

\[\left(2.73 \times 10^4 \right)^2 = \frac{4 \pi^2}{G M} \left(9.4 \times 10^6 \right)^3 \]

\[M = 6.38 \times 10^{22} \text{ kg} \]

13.47

\[r = 2.2 \times 10^7 \text{ m} \]

\[T = 2.5 \times 10^8 \text{ sec} = 7.85 \times 10^3 \text{ s} \]

\[T^2 = \frac{4 \pi^2}{G M} r^3 \]

\[\left(7.85 \times 10^3 \right)^2 = \frac{4 \pi^2}{G M} \left(2.2 \times 10^7 \right)^3 \]

\[M = 1.02 \times 10^{11} \text{ kg} \]

At each star: \(m = 2 \times 10^{33} \text{ kg} \), so there are:

\[\frac{1.02 \times 10^{11}}{2 \times 10^{33}} \approx 5.1 \times 10^{-22} \text{ stars} \]

13.48

\[\frac{T^2}{T^2} = \frac{\frac{4 \pi^2}{G M}}{\frac{4 \pi^2}{G M}} \frac{r_M}{r_e} \]

\[\left(\frac{T_M}{T_e} \right)^2 = \left(\frac{r_M}{r_e} \right)^3 = \left(1.52 \right)^3 \]

\[\frac{T_M}{T_e} = 1.87 \]

\[T_M = 1.87 \times T_e \]

\[T_M = 1.87 \text{ years} \]

Value in back of book is the same: 1.88 years

13.56

Idea:

\[\text{Take } r = 10^8 \text{ km} \]

\[T = 2.3 \times 10^4 \text{ s} \]

\[a) \quad T^2 = \frac{4 \pi^2}{G M} r^3 \]

\[\left(9.72 \times 10^8 \right)^2 = \frac{4 \pi^2}{G M} \left(100 \times 10^8 \right)^3 \]

\[M = 6.2 \times 10^{16} \text{ kg} \]

\[b) \quad V = 14 \times 10^8 \text{ km}^3 = 1.41 \times 10^{13} \text{ m}^3 \]

\[\text{Density: } \frac{m}{V} = \frac{6.2 \times 10^{16}}{1.41 \times 10^{13}} = 4.44 \times 10^3 \text{ kg/m}^3 \]

\[4.44 \text{ g/cm}^3 \]
13.4

\[M = 5.96 \times 10^4 \text{kg} \]

\[m = 7.36 \times 10^3 \text{kg} \]

\[M = 1.09 \times 10^2 \text{kg} \]

\[r = 3.72 \times 10^8 \text{m} \]

\[r = 1.5 \times 10^9 \text{m} \]

\[\frac{F_{\text{moon by Sun}}}{F_{\text{moon by Earth}}} = \frac{G \frac{m \cdot M_s}{r_s^2}}{G \frac{m \cdot M_E}{r_E^2}} \]

\[= \frac{M_s}{M_E} \left(\frac{r_E}{r_s} \right)^2 \]

\[= \frac{1.09 \times 10^2}{7.36 \times 10^3} \left(\frac{3.82 \times 10^8}{1.5 \times 10^9} \right)^2 \]

\[= 2.17 \]

13.5

\[m_1 = 5 \times 10^{-3} \text{kg} \]

\[m_2 = 3 \times 10^{-3} \text{kg} \]

\[m_3 = 1 \times 10^{-3} \text{kg} \]

\[m_4 = 5 \times 10^{-3} \text{kg} \]

\[m_5 = 2.5 \times 10^{-3} \text{kg} \]

First, notice that forces \(F_1 \) and \(F_4 \) will cancel because they have the same magnitude and opposite direction.

\[|F_2| = F_2 = G \frac{m_5 \cdot M_2}{r^2} = (6.67 \times 10^{-11}) \frac{(2.5 \times 10^{-3}) (3 \times 10^{-3})}{(0.1414)^2} \]

\[= 2.5 \times 10^{-14} \text{ Newtons} \]

\[|F_3| = F_3 = G \frac{m_5 \cdot M_3}{r^2} = (6.67 \times 10^{-11}) \frac{(2.5 \times 10^{-3}) (1 \times 10^{-3})}{(0.1414)^2} \]

\[= 8.34 \times 10^{-15} \text{ Newtons} \]

\[= 0.834 \times 10^{-14} \text{ Newtons} \]

Then

\[F_2 = F_2 \cos 45^\circ \hat{i} + F_2 \sin 45^\circ \hat{j} \]

\[F_3 = -F_3 \cos 45^\circ \hat{i} + -F_3 \sin 45^\circ \hat{j} \]

\[F_{\text{total}} = (F_2 - F_3) \cos 45^\circ \hat{i} + (F_2 - F_3) \sin 45^\circ \hat{j} \]

\[= 1.18 \times 10^{-14} \hat{i} + 1.18 \times 10^{-14} \hat{j} \text{ Newtons} \]
13.27

\[F = \frac{G M_{\text{sun}} m}{r^2} \]

We want to find \(F \) for Earth.

- \(M_{\text{sun}} = 1.99 \times 10^{30} \text{ kg} \)
- \(m = 5.97 \times 10^{24} \text{ kg} \)
- \(r = 1.5 \times 10^7 \text{ m} \)

\[F = \frac{G (1.99 \times 10^{30}) (5.97 \times 10^{24})}{(1.5 \times 10^7)^2} \]

\[F = \frac{6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 5.97 \times 10^{24}}{2.25 \times 10^{14}} \]

\[F = 3.92 \times 10^{-6} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \]

A) \(g \) at surface of earth

\[g = \frac{F}{m} \]

\[g = \frac{3.92 \times 10^{-6} \times 1.8 \times 10^{17}}{5.97 \times 10^{24}} \]

\[g = 9.76 \text{ m/s}^2 \]

B) \(g \) at top of mantle

\[g = \frac{M_{\text{mantle}}}{r^2} \]

\[g = \frac{(6.67 \times 10^{-11} \times 4.1 \times 10^{12})}{(3.94 \times 10^7)^2} \]

\[g = \frac{2.77 \times 10^{-2}}{3.32 \times 10^{15}} \]

\[g = 8.83 \times 10^{-17} \text{ m/s}^2 \]

C) Suppose Earth were uniform density. Calc. \(g \)

\[M = \frac{4}{3} \pi R^3 \rho \]

\[M = \frac{4}{3} \pi (6.4 \times 10^6)^3 \times 5.5 \times 10^3 \]

\[M = 5.98 \times 10^{24} \text{ kg} \]

\[\rho = \frac{M}{4/3 \pi R^3} \]

\[\rho = \frac{5.98 \times 10^{24}}{4/3 \pi (6.4 \times 10^6)^3} \]

\[\rho = 5.5 \times 10^3 \text{ kg/m}^3 \]

\[g = \frac{GM}{r^2} \]

\[g = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.4 \times 10^6)^2} \]

\[g = 9.82 \text{ m/s}^2 \]

So

\[g = \frac{GM}{r^2} \]

\[g = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.4 \times 10^6)^2} \]

\[g = 9.75 \text{ m/s}^2 \]
13.39

A) What speed will it hit surface if dropped from 1600 km above surface?

\[KE = 0 \quad U = -\frac{G \cdot m \cdot M}{r} \]

\[v_f = \sqrt{\frac{2 \cdot G \cdot M}{r}} = \sqrt{\frac{2 \cdot (6.67 \times 10^{-11}) \cdot (1.124 \times 10^{22})}{500 \times 10^3}} \]

\[v_f = 1.73 \times 10^3 \text{ m/s} = 1.73 \text{ km/s} \]

b) How high will it go if \(v_e = 1860 \text{ m/s} \)

\[KE = 0 \quad U = -\frac{G \cdot m \cdot M}{r_f} \]

\[\frac{1}{2} m v_e^2 + -\frac{G \cdot m \cdot M}{r} = 0 + -\frac{G \cdot m \cdot M}{r_f} \]

\[\frac{1}{2} (1860)^2 - (6.67 \times 10^{-11}) \frac{1.124 \times 10^{22}}{500 \times 10^3} = - (6.67 \times 10^{-11}) \frac{1.124 \times 10^{22}}{r_f} \]

\[r_f = 7.5 \times 10^5 \text{ m} = 750 \text{ km} \]

or 250 km above surface
Earth escape speed = 11.2 km/s

To determine expression for escape speed:

\[\frac{v_e}{R_E} \]

Total Initial Energy = Total Final Energy

\[\frac{1}{2}mv_e^2 + -G \frac{mM}{R_E} = 0 + 0 \]

\[KE_{\text{escape}} = -G \frac{mM}{R_E} \]

\[\frac{1}{2}mv_e^2 = G \frac{mM}{R_E} \]

Now after we've got these formulae, set the actual problem up.

\[KE = 0 \]

\[KE_{\text{escape}} = -G \frac{mM}{R_E} \]

\[\frac{1}{2}mv_e^2 = G \frac{mM}{r_f} \]

a) \[v_e = \frac{1}{2} \text{ escape speed} \]

Note that this implies \(KE_e = \frac{1}{4} KE_{\text{escape}} \)

So

\[\frac{1}{4} KE_{\text{escape}} - G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[\frac{1}{4} G \frac{mM}{R_E} - G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[-G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[r_f = \frac{4}{3} R_E \]

b) \[KE_e = \frac{1}{2} KE_{\text{escape}} \]

So

\[\frac{1}{2} KE_{\text{escape}} - G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[\frac{1}{2} G \frac{mM}{R_E} - G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[-G \frac{mM}{R_E} = -G \frac{mM}{r_f} \]

\[r_f = 2R_E \]

c) tricky wording.

Because Mechanical Energy = KE + Potential Energy

The answer is Zero.
Do fbd for the circular motion
\[m\cdot \frac{v^2}{r} = \frac{GM^2}{r^2} \]
\[v^2 = \frac{GM}{r} = \frac{6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2} \times 5.96 \times 10^{24} \text{ kg}}{6370 \text{ km} + 160 \text{ km}} = \frac{5.96 \times 10^{24}}{6530 \times 10^3} \]
\[V = 7.80 \times 10^3 \text{ m/s} = 7.8 \text{ km/s} \]

Revised
\[V = \frac{2\pi r}{T} \]
\[7.80 \times 10^3 = \frac{2\pi (6530 \times 10^3)}{T} \]
\[T = 5.26 \times 10^3 \text{ sec} = 1.46 \text{ hrs} \]

13.43

We could just start with Kepler's 2-3 Rule
\[T^2 = \frac{4\pi^2}{GM} r^3 \]
\[(2.754 \times 10^6)^2 = \frac{4\pi^2}{(6.67 \times 10^{-11})} \times (9.4 \times 10^6)^3 \]
\[M = 6.48 \times 10^{23} \text{ kg} \]

13.45

\[r = 9.4 \times 10^6 \text{ m} \]
\[T = 7h 39m = 2.754 \times 10^4 \text{ sec} \]

\[T^2 = \frac{4\pi^2}{GM} r^3 \]
\[(7.85 \times 10^{15})^2 = \frac{4\pi^2}{(6.67 \times 10^{-11})} \times (2.2 \times 10^{20})^3 \]
\[M = 1.02 \times 10^{41} \text{ kg} \]

If each star is \(\sim 2 \times 10^{36} \text{ kg} \), then there are
\[\frac{1.02 \times 10^{41}}{2 \times 10^{36}} \sim 5.1 \times 10^5 \text{ stars} \]
13.48

\[T^2 = \frac{4\pi^2}{GM} r^3 \]

Form a ratio

\[\frac{T_m^2}{T_e^2} = \frac{\frac{4\pi^2}{GM_m} r_m^3}{\frac{4\pi^2}{GM_e} r_e^3} \]

\[\left(\frac{T_m}{T_e} \right)^2 = \left(\frac{r_m}{r_e} \right)^3 = \left(1.52 \right)^3 \]

\[\frac{T_m}{T_e} = 1.87 \]

\[T_m = 1.87 \, T_e \]

\[T_m = 1.87 \, \text{years} \]

Value in back of book is the same ~ 1.88 years

13.56

Ida, Dactyl take \(r \approx 100 \, \text{km} \)

\[T = 27h = 9.72 \times 10^4 \, \text{s} \]

a) Use

\[T^2 = \frac{4\pi^2}{GM} r^3 \]

\[\left(9.72 \times 10^4 \right)^2 = \frac{4\pi^2}{(6.67 \times 10^{-11}) M} \left(100 \times 10^3 \right)^3 \]

\[M = 6.26 \times 10^{24} \, \text{kg} \]

b) Volume

\[14100 \, (\text{km}^3) = 1.41 \times 10^{13} \, \text{m}^3 \]

\[\text{density} = \frac{\text{mass}}{\text{vol}} = \frac{6.26 \times 10^{24}}{1.41 \times 10^{13}} = 4.44 \times 10^3 \, \text{kg/m}^3 \]

\[= 4.44 \, \text{g/cm}^3 \]