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This paper describes the modeling language CHARON for
modular design of interacting hybrid systems. The language allows
specification of architectural as well as behavioral hierarchy and
discrete as well as continuous activities. The modular structure of
the language is not merely syntactic, but is exploited by analysis
tools and is supported by a formal semantics with an accompanying
compositional theory of refinement. We illustrate the benefits of
CHARON in the design of embedded control software using exam-
ples from automated highways concerning vehicle coordination.
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I. INTRODUCTION

An embedded system typically consists of a collection
of digital programs that interact with each other and with
an analog environment. Examples of embedded systems in-
clude manufacturing controllers, automotive controllers, en-
gine controllers, avionic systems, medical devices, micro-
electromechanical systems, and robots. As computing tasks
performed by embedded devices become more sophisticated,
the need for a sound discipline for writing embedded soft-
ware becomes more apparent (cf. [1]). An embedded system
consisting of sensors, actuators, plant, and control software is
best viewed as ahybridsystem. The relevance of hybrid mod-
eling has been demonstrated in various applications such as
coordinating robot systems [2], automobiles [3], aircraft [4],
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and chemical process control systems [5]. A model-based de-
sign paradigm is particularly attractive because of its promise
for greater design automation and formal guarantees of reli-
ability.

Traditionally, control theory and related engineering
disciplines have addressed the problem of designing robust
control laws to ensure optimal performance of processes
with continuous dynamics. This approach to system design
largely ignores the problem of implementing control laws
as a piece of software and issues related to concurrency
and communication. Computer science and software engi-
neering, on the other hand, have an entirely discrete view of
the world, which abstracts from the physical characteristics
of the environment to which the software is reacting and is
typically unable to guarantee safety and/or performance of
the embedded device as a whole. Hybrid modeling combines
these two approaches and is natural for specification of
embedded systems.

We have been developing a modeling language,
CHARON, that is suitable for specification of interacting
embedded systems as communicating agents. CHARON
has been used in the modeling and analysis of a wide
range of hybrid systems, such as automotive power trains,
vehicle-to-vehicle control systems [6], biological cells
[7], multiagent systems [8], [9], and infusion pump and
inverted pendulum systems [10]. The two salient aspects of
CHARON are that it supports modular specifications and
that it has a well-defined formal semantics.

Hierarchical, Modular Modeling: Modern software de-
signparadigmspromotehierarchyasoneof thekeyconstructs
for structuring complex specifications. They are concerned
with two distinct notions of hierarchy. Inarchitectural hier-
archy, a system with a collection of communicating agents
is constructed by parallel composition of atomic agents; in
behavioral hierarchy, the behavior of an individual agent is
described by hierarchical sequential composition. The former
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hierarchy is present in almost all concurrency formalisms,
and the latter, while present in all block-structured program-
ming languages, was introduced for state-machine-based
modeling in STATECHARTS [11]. CHARON supports both
architectural and behavioral hierarchies.

Early formal models for hybrid systems include phase
transition systems [12] and hybrid automata [13]. Although
modularity in hybrid specifications has been addressed in
languages such as hybrid input–output (I/O) automata [14],
CHARON allows richer specifications. Discrete updates
in CHARON are specified byguarded actionslabeling
transitions connecting the modes. Some of the variables in
CHARON can be declaredanalog, and they flow continu-
ously during continuous updates that model the passage of
time. The evolution of analog variables can be constrained in
three ways:differential constraints (e.g., by equations such
as ), algebraic constraints (e.g., by equations
such as ), and invariants (e.g., )
which limit the allowed durations of flows.

Compositional Semantics:Formal semantics leads to
definitions ofsemanticequivalence (or refinement) of speci-
fications based on their observable behaviors.Compositional
here means that semantics of a component can be constructed
fromthesemanticsof itssubcomponents.Suchformalcompo-
sitionalsemantics isacornerstoneofconcurrencyframeworks
such as communicating sequential processes (CSP) [15]
and the calculus of communicating systems (also referred to
as CCS) [16], and is a prerequisite for developing modular
reasoning principles such as compositional model checking
and systematic design principles such as stepwise refinement.

Two aspects of CHARON make it difficult to adopt
existing techniques. First, the global nature of time makes it
challenging to define semantics of hybrid components in a
modular fashion. Second, features such as group transitions,
exceptions, and history retention supporting rich hierarchical
specifications cause additional difficulties. The composi-
tional semantics of CHARON supports observational trace
semantics for both modes and agents [17]. The key result is
that the set of traces of a mode can be constructed from the
traces of its submodes. This result leads to a compositional
notion of refinement for modes.

This paper is organized as follows. Section II gives a
short overview of related work. In Section III, we present
the features of the language CHARON, and in Section IV
we describe the formal semantics and accompanying com-
positional refinement calculus, using examples from the
automotive experimental platform of DARPA’s MoBIES
project. Section V gives an overview of ongoing research on
formal analysis. We conclude in Section VI with a summary
of the CHARON design toolkit.

II. BACKGROUND

Software Design Notations:Modern object-oriented
design paradigms such as the Unified Modeling Language
(UML) allow specification of the architecture and control
at high levels of abstraction in a modular fashion and bear
great promise as a solution to managing the complexity

at all stages of the software design cycle [18]. Emerging
tools such as RationalRose (available: www.rational.com)
support modeling, simulation, and code generation and
are becoming increasingly popular in domains such as
automotive software and avionics.

Tool Support for Control System Design:Traditionally,
control engineers have used tools for continuous differential
equations such as MATLAB (available: www.math-
works.com) for modeling of the plant behavior, for deriving
and optimizing control laws, and for validating functionality
and performance of the model through analysis and simu-
lation. Tools such as SIMULINK recently augmented the
continuous modeling with state-machine-based modeling of
discrete control.

Modeling Languages for Hybrid Systems:Tobenefit from
object-oriented design, several languages that support object-
oriented modeling of complex dynamical systems have been
proposed. Omola [19], Dymola [20], and Modelica [21] pro-
videnoncausalmodels; that is, there isnonotionofcausality in
theequationsinthemodels.Thosethreehavebeenusedmostly
for describing physical objects, whereas SHIFT [22] is more
like a programming language and has been used extensively
to specify automated vehicle highway systems. PTOLEMY II
[23] supports the modeling, simulation, and design of concur-
rent systems. It incorporates a number of models of computa-
tion (such as synchronous/reactive systems, CSP, finite state
machines, continuous time, etc) with semantics that allow do-
mains to interoperate.

All the above languages were proposed for modeling and
simulation purposes and have not been used for formal veri-
fication of systems. CHARON has compositional formal se-
mantics required to reason about systems in a modular way
while incorporating many features of the aforementioned lan-
guages. Two features that are not supported by CHARON are
model inheritance and dynamic creation of model instances.

Model Checking: Inspired by the success of model
checking in hardware verification and protocol analysis
[24], [25], there has been increasing research on developing
techniques for automated verification of hybrid (mixed
discrete-continuous) models of embedded controllers [13],
[26]–[29]. The state-of-the-art computational tools for
model checking of hybrid systems are of two kinds. Tools
such as KRONOS [30], UPPAAL [31], and HYTECH [32]
limit the continuous dynamics to simple abstractions such
as rectangular inclusions (e.g., ) and compute the
set of reachable states exactly and effectively by symbolic
manipulation of linear inequalities. On the other hand,
emerging tools such as CHECKMATE [33], d/dt [34], and
level-sets method [35], [36] approximate the set of reachable
states by polyhedra or ellipsoids [37] using optimization
techniques. Even though these tools have been applied to in-
teresting real-world examples after appropriate abstractions,
scalability remains a challenge.

III. M ODELING LANGUAGE

In CHARON, the building block for describing the system
architecture is anagentthat communicates with its environ-
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ment by means of shared variables. The language supports
the operations ofcompositionof agents to model concur-
rency,hiding of variables to restrict sharing of information,
and instantiationof agents to support reuse. The building
block for describing flow of control inside an atomic agent
is amode. A mode is basically a hierarchical state machine;
that is, a mode can have submodes and transitions connecting
them. Variables can be declared locally inside any mode with
standard scoping rules for visibility. Modes can be connected
to each other only by well-defined entry and exit points. We
allow sharingof modes so that the same mode definition can
be instantiated in multiple contexts. To supportexceptions,
the language allows group transitions from default exit points
that are applicable to all enclosing modes; to supporthistory
retention, the language allows default entry transitions that
restore the local state within a mode from the most recent
exit.

Case Study:Throughout this paper, we will use a recent
case study to illustrate the modeling and analysis concepts
within the proposed framework. The case study is based on
the longitudinal control system for vehicles moving in an In-
telligent Vehicle Highway System (IVHS) [38]. A detailed
description of the system can be found in [39]. Before pro-
ceeding with the modeling of the problem, we present a brief
informal description of the control system.

In the context of IVHS, vehicles travel in platoons; inside a
platoon, all vehicles follow the leader. We consider a platoon

and its preceding platoon ( ). Let and denote
the velocity and acceleration, respectively, of the platoon,
and let be its distance to the platoon ( ). The most
important task of a longitudinal controller for the leader car
of each platoon is to maintain the distance equal to a
safety distance ; in the nominal
operation, , and . Other tasks
the controller should perform are to track an optimal velocity
and trajectories for certain maneuvers. Without going into
details, the controller for the leader car of platoonproposed
in [39] consists of four control laws, which are used in
different regions of the state space. These regions are defined
based on the values of the relative velocity

and the error between the actual and the safe inter-
platoon distances . When and change
from one region to another, the control law should change
accordingly. One importantpropertywe want to verify is that
a collision between platoons never happens, that is,

. To this end, we consider a system with four continuous
variables ( ). The dynamics of these variables
are as follows:

(1)

where is the control. One can see that the dynamics of each
platoon depends on the state of its preceding platoon. We
consider a pair of platoons ( ) and and prove that the
controller of the leader car of platooncan guarantee that
no collision happens regardless of the behavior of platoon

( ). More precisely, the acceleration of the platoon in
front is treated asuncertain inputwith values in the interval
[ ] where and are the maximal possible
deceleration and acceleration.

A. Agents and Architectural Hierarchy

The architectural hierarchy of the above platoon control
system is shown in Fig. 1. The agent - consists
of two subagents, namely and . The
subagent models the control laws and outputs
the acceleration of the platoon . The subagent
takes as input the variable and updates the variable
of the platoon . The agent - , whose role is
to model all possible behaviors of the platoon in front, out-
puts its own velocity (variable ) to the agent - .
In other words, the velocity (or acceleration) of the platoon
( ) can be seen asuncertain input(or external distur-
bance) to the agent - .

Each agent has a well-defined interface consisting of its
typed input and output variables, represented visually as
blank and filled squares, respectively. The two variables

of the agents - and - are
inputs to the agent , which outputs the distance
between the two platoons. The subagent of

- computes the desired accelerationbased on
the inter-platoon distance and the velocity of the platoon in
front.

Formally, anagent, , consists of a set
of variables, a set of initial states and a set of

modes. The set is partitioned intolocal variables and
global variables ; global variables are further partitioned
into input and output variables. Type correct assignments
of values to variables are called valuations and denoted

. The set of initial states specifies possible
initializations of the variables of the agent. The modes,
described in more detail below, collectively define the
behavior of the agent. Anatomicagent has a single top-level
mode.Compositeagents are constructed from other agents
and have many top-level modes. For example, the behavior
of the agent - is given by the top-level modes of
its atomic subagents, and .

Fig. 1 illustrates the three operations defined on agents.
Agents can becomposedin parallel with each other. The par-
allel agents execute concurrently and communicate through
shared variables. To enable communication between agents,
global variables arerenamed. For example, variables of
agents - and - are renamed into

and , respectively, so that the agent
can read them without confusion. Finally, the

communication between the vehicles can behidden from
the outside world. In our example, only the variable is
the output of the - agent. The variable , used
internally by the agent - , cannot be accessed from
the outside.

B. Modes and Behavioral Hierarchy

Modes represent behavioral hierarchy in the system de-
sign. The behavior of each atomic agent is described by a
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Fig. 1 The architectural hierarchy of the platoon controller.

mode, which corresponds to a single thread of discrete con-
trol. Each mode has a well-defined data interface consisting
of typed global variables used for sharing state information
and also a well-defined control interface consisting of entry
and exit points, through which discrete control enters and
exits the mode. Entry and exit points are denoted as blank
and filled circles, respectively. A top-level mode, which is
activated when the corresponding agent comes into existence
and is never deactivated, has a special entry point.

At the lowest level of the behavioral hierarchy are atomic
modes. They describe continuous behaviors. For example,
Fig. 2 illustrates the behavior of the mode , which
specifies a control law by means of a differential constraint
that asserts the relationship between desired acceleration
and input variables of the mode, representing the velocities
of the platoon, the platoon in front of it and the distance
between platoons. CHARON also supports algebraic con-
straints on variable values. In addition, aninvariant may be
used to specify how long the mode can remain active. Once
an invariant is violated, the mode has to be exited by taking
one of the transitions leaving the mode.

The values of , and are pa-
rameters of the mode. The mode can be instantiated with dif-
ferent values for the parameters several times in the same
model, yielding different control laws. This will be illustrated
later.

Composite modes contain a number of submodes. During
execution, a composite mode performs discrete transitions
that connect its control points and control points of its sub-
modes. For example, the behavior of the agent
is captured by the mode shown in Fig. 3. To avoid cluttering
the figure, we omit the guards on mode transitions.

Formally, a mode consists
of a set of submodes , a set of variables , a set ofentry
control points , a set ofexit control points , a set of transi-
tions , and a set of constraints . As in agents, variables
are partitioned into global and local variables. For the sub-
modes of , we require that each global variable of a sub-
mode is a variable (either global or local) of. This induces
a natural scoping rule for variables in a hierarchy of modes:
a variable introduced as local in a mode is accessible in all
its submodes but not in any other mode. Every mode has two
distinguished control points, called default entry () and exit
( ) points. They are used to represent such high-level be-
havioral notions as interrupts and exceptions, which will be
discussed in more detail in Section IV.

Constraints of a mode define continuous behavior of a
mode in three ways. Continuous trajectories of a variable

Fig. 2 ModeTrack.

Fig. 3 Behavior of the agentController.

can be given by either an algebraic constraint, which de-
fines the set of admissible values forin terms of values of
other variables, or by a differential constraint , which de-
fines the admissible values for the first derivative ofwith
respect to time. Additionally, only those trajectories are al-
lowed that satisfy the invariant of the mode, which is a pred-
icate over the mode variables.

Transitions of a mode can be classified asentry tran-
sitions, which connect an entry point of with an entry
point of one of its submodes;exit transitions, connecting exit
points of submodes to exit points of ; andinternal transi-
tions that lead from an exit point of a submode to an entry
point of another submode. In the example, the entry tran-
sition of specifies that the mode starts in the
TrackOptimal submode, which will be used to “catch up”
with the platoon in front. There are no exit transitions, since
it is a top-level mode and must execute forever. Every transi-
tion has aguard, which is a predicate over the valuations of
mode variables that specifies when the transition can be ex-
ecuted. When a transition occurs, it executes a sequence of
assignments, changing values of the mode variables. A tran-
sition that originates at a default exit point of a submode is
called a group transition of that submode. A group transition
can be executed to interrupt the execution of the submode.
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In CHARON, transitions and constraints can refer to exter-
nally defined Java classes, thus allowing richer discrete and
continuous specifications.

IV. FORMAL SEMANTICS AND COMPOSITIONAL

REFINEMENT

In this section, we first define the operational semantics
of modes and agents that makes the notion of executing a
CHARON model precise and can be used, say, by a simu-
lator. Second, we define observational semantics for modes
and agents. The observational semantics hides the details
about internal structure and retains only the information
about inputs and outputs. Informally, the observational
semantics consists of the static interface (such as the global
variables and entry/exit points) and dynamic interface
consisting of thetraces, that is, sequences of updates to
global variables. Third, for modularity, we show that our
semantics is compositional. This means that the set of traces
of a component can be defined from the set of traces of its
subcomponents. Intuitively, this means that the observational
semantics capturesall the information that is needed to
determine how a component interacts with its environment.
Finally, we define a notion of refinement (or equivalence)
for modes/agents. This allows us to relate different models
of the same system. We can establish, for instance, that an
abstract (simplified) version of a platoon refines a detailed
version, and then analyze control of platoons using the
abstract version instead of the detailed one, significantly
simplifying analysis. The compositional rules about refine-
ment form the basis for analysis in a system with multiple
components, each with a simplified and a detailed model.

A. Formal Semantics of Modes

Intuitive Semantics:Before presenting the semantics for-
mally, we give the intuition for mode executions. A mode can
engage in discrete or continuous behavior. During an execu-
tion, the mode and its environment either take turns making
discrete steps or take a continuous step together. Discrete
and continuous steps of the mode alternate. During a con-
tinuous step, the mode follows a continuous trajectory that
satisfies the constraints of the mode. In addition, the set of
possible trajectories may be restricted by the environment of
the mode. In particular, when the mode invariant is violated,
the mode must terminate its continuous step and take one of
its outgoing transitions. A discrete step of the mode is a finite
sequence of discrete steps of the submodes and enabled tran-
sitions of the mode itself. A discrete step begins in the current
state of the mode and ends when it reaches an exit point or
when the mode decides to yield control to the environment
and lets it make the choice of the next step. Technically, when
the mode ends its discrete step in one of its submodes, it re-
turns control to the environment via its default exit point. The
closure construction, described later, ensures that the mode
can yield control at appropriate moments and that the discrete
control state of the mode is restored when the environment
schedules the next discrete step.

Preemption: An execution of a mode can be preempted
by agrouptransition. A group transition of a mode originates
at the default exit of the mode. During any discrete step of the
mode, control can be transferred to the default exit, and an
enabled group transition can be selected. There is no priority
between the transitions of a mode and its group transitions.
When an execution of a mode is preempted, the control state
of the mode is recorded in a specialhistoryvariable, a new
local variable that we introduce into every mode. Then, when
the mode is entered through the default entry point next time,
the control state of the mode is restored according to the his-
tory variable.

The History Variable and Active Submodes:To record the
location of discrete control during executions, we introduce
a new local variable into each mode that has submodes.
The history variable of a mode has the names of the
submodes of as values, or a special valuethat is used
to denote that the mode is not active. A submodeof is
calledactivewhen the history variable of has the value

.
Flows: To precisely define continuous trajectories of a

mode, we introduce the notion of aflow. A flow for a set
of variables is a differentiable functionfrom a closed in-

terval of nonnegative reals [0,] to . We refer to as the
durationof the flow. We denote a set of flows for as .

Syntactic Restrictions on Modes:To ensure that the se-
mantics of a mode is well-defined, we impose several re-
strictions on mode structure. First, we assume that the set of
differential and algebraic constraints in a mode always has
a nonempty set of flows that satisfy them. This is needed to
ensure that the set of behaviors of a mode is nonempty. Fur-
thermore, we require that the mode cannot be blocked at any
of its nondefault control points. This means that the disjunc-
tion of all guards originating from a control point evaluates
to .

State of a Mode:We define the state of a mode in terms
of all variables of the mode and its submodes, including the
local variables on all levels. We use for the set of all vari-
ables. The local variables of a mode together with the local
variables of the submodes are called the private variables;
this set of variables is denoted as.

The state of a mode is a pair ( ), where is the loca-
tion of discrete control in the mode and . When-
ever the mode has control, it resides in one of its control
points, that is, . Given a state ( ) of , we refer
to as thecontrol stateof and to as thedata stateof .

Closure of a Mode:Closure construction is a technical
device to allow the mode to interrupt its execution and to
maintain its history variable. Transitions of the mode are
modified to update the history variableafter a transition is
executed. Each entry or internal transition assigns the name
of the destination mode to, and exit transitions assignto

. In addition, default entry and exit transitions are added to
the set of transitions of the mode. These default transitions
do not affect the history variable and allow us to interrupt an
execution and then resume it later from the same point.

The default entry and exit transitions are added in the fol-
lowing way. For each submode of , the closure adds a
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default exit transition from to . This transition
does not change any variables of the mode and is always en-
abled. Default entry transitions are used to restore the local
control state of . A default entry transition that leads from
a default entry of to the default entry of a submode is
enabled if . Furthermore, we make sure that the de-
fault entry transitions do not interfere with regular entry tran-
sitions originating from . The closure changes each such
transition so that it is enabled only if . The closure
construction for the mode introduced in Sec-
tion III-B is illustrated in Fig. 4.

Operational Semantics:An operational view of a
closed-mode with the set of variables consists of a
continuousrelation and, for each pair , ,
a discreterelation .

The relation gives, for every data state of
the mode, the set of flows from this state. By definition, if the
control state of the mode is not at , the set of flows for the
state is empty. is obtained from the constraints of a mode
and relations of its submodes. Given a data state
of a mode , iff satisfies the constraints of

and, if is the active submode at, ( ), restricted to
the global variables of , belongs to .

The relation , for each entry point and exit point
of a mode, is composed ofmacrostepsof a mode starting at

and ending at . A macrostep consists of a sequence of
microsteps. Each microstep is either a transition of the mode
or a macrostep of one of its submodes. Given the relations

of the submodes of , a microexecutionof a mode
is a sequence of the form

such that every ( ) is a state of and for even ,
( ) is a transition of , while for odd
, ( ) is a macrostep of one of the submodes of.

Given such a microexecution of with and
, we have . To illustrate the no-

tion of macrosteps, consider the closed-mode
from Fig. 4. Let be such that and is false.
Then there is a microexecution for ,

, , and (we
show only the control points of the microexecution for
clarity). This means that

. If is true in a state , then
corresponding to the mi-

croexecution , ,
, , and .

The operational semanticsof the mode consists of
its control points , its variables and relations

and . The operational semantics of a mode de-
fines a transition system over the states of the mode.
We write if and

if , where is defined on
the interval [0, ] and . We extend to include
environmentsteps. An environment step begins at an exit
point of the mode and ends at an entry point. It represents
changes to the global variables of the mode by other com-
ponents while the mode is inactive. Private variables of the
mode are unaffected by environment steps. Thus, there is an

Fig. 4 The closure of a mode.

environment step whenever ,
and . We let range over . An
executionof a mode is now a path through the graph of

(2)

Trace Semantics:To be able to define a refinement rela-
tion between modes, we consider trace semantics for modes.
A traceof the mode is a projection of its executions onto the
global variables of the mode. Thetrace semanticsfor is
given by its control points and , its global variables ,
and its set of its traces .

In defining compositional and hierarchical semantics, one
has to decide what details of the behavior of lower-level com-
ponents are observable at higher levels. In our approach, the
effect of a discrete step that updates only local variables of a
mode is not observable by its environment, but stoppage of
time introduced by such a stepis observable. For example,
consider two systems, one of which is always idle, while the
other updates a local variable every second. These two sys-
tems are different, since the second one does not have flows
more than one second long. Defining modular semantics in a
way that such distinction is not made seems much more dif-
ficult.

B. Trace Semantics for Agents

An execution of an agent follows a tra-
jectory, which starts in one of the initial states and is a se-
quence of flows interleaved with discrete updates to the vari-
ables of the agent. An execution of is constructed from
the relations and of its top-level mode. For a fixed
initial state , each mode starts out in the state
( ), where is the nondefault entry point of

and . Note that as long as there is a mode
whose control state is at , no continuous steps are

possible. However, any discrete step of such a mode will
come from and bring the control state of to .
Therefore, any execution of the agentwith
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will start with exactly discrete initialization steps. At that
point, every top-level mode of will be at its default exit
point, allowing an alternation of continuous steps from
and discrete steps from . The choice of a continuous
step involving all modes or a discrete step in one of the modes
is left to the environment. Before each discrete step, there
is an environment step, which takes the control point of the
chosen mode from to and leaves all the private vari-
ables of all top-level modes intact. After that, a discrete step
of the chosen mode happens, bringing control back to.
Thus, an execution of with is a sequence

such that:

1) the first steps are discrete and initialize the top-level
modes of .

2) for every , one of the following holds:
a) the th step is a continuous step, in which every

mode takes part;
b) the th step is a discrete environment step;
c) the th step is a discrete step by one of the modes

and the private variables of all other modes are
unchanged.

Note that environment steps in agents and in modes are
different. In an agent, an environment step may contain only
discrete steps, since all agents participate in every continuous
step. The environment of a mode can engage in a number of
continuous steps while the mode is inactive.

A trace of an agent is an execution of , projected onto
the set of its global variables. The denotational semantics of
an agent consists of its set of global variablesand its set
of traces .

Trace semantics for modes and agents can be related to
each other in an obvious way. Given an atomic agentwhose
behavior is given by a mode , we can obtain a trace of
by taking a trace of and erasing the information about the
control points from it.

C. Compositionality Results

As shown in [17], our semantics is compositional for both
modes and agents as follows. First, the set of traces of a mode
can be computed from the definition of the mode itself and
the semantics of its submodes. Second, the set of traces of a
composite agent can be computed from the semantics of its
subagents.

Mode Refinement:The trace semantics leads to a natural
notion of refinement between modes. A modeand a mode

are said to becompatibleif , ,
and , i.e., they have the same global variables
and control points. For two compatible modesand , we
say that refines , denoted , if , i.e., every
trace of is a trace of .

The refinement operator is compositional with respect to
the encapsulation. If, for each submodeof there is a
mode such that , then we have that ,
where is obtained from by replacing every with

. The refinement rule is explained visually in the left side
of Fig. 5.

Fig. 5 Compositionality rules for modes.

A second refinement rule is defined for contexts of modes.
Informally, if we consider a submode within a mode ,
the remaining submodes of and the transitions of can
be viewed as an environment ormode contextfor .

As with modes, refinement of contexts is also defined
by language inclusion and is also compositional. If a con-
text refines another context , then inserting modes

into the two contexts preserves the refinement
property. A visual representation of this rule is shown in the
right side of Fig. 5. Precise statements of the results can be
found in [17].

Compositionality of Agents:An agent is, in essence, a
set of top-level modes that interleave their discrete transi-
tions and synchronize their flows. The compositionality re-
sults for modes lift in a natural way to agents too. The op-
erations on agents are compositional with respect to refine-
ment. An agent and an agent are said to becompatible
if . Agent refines a compatible agent, de-
noted , if . Given compatible agents such that

and , let
be indexed sets of variables with and

let . Then
and .

V. ANALYSIS

Since CHARON models have a precise semantics, they
can be subjected to a variety of analyzes. In this section,
we give a brief overview of our ongoing research efforts
in formal analysis methods for hybrid systems. These in-
clude new techniques in accurate event detection for simu-
lation, efficient simulation, reachability analysis to detect vi-
olations of safety requirements and abstraction methods for
enhancing the applicability of analysis techniques.

A. Simulation Techniques

Numerical simulation is an important tool for designing
and analyzing many types of control systems, including hy-
brid systems. In addition to pure simulation, numerical ap-
proximation techniques are increasingly being used in reach-
ability computations, verification, and other forms of auto-
mated analysis [33], [36], [40].

All numerical simulators operate based on some assump-
tions about the nature of the systems being simulated. The
degree to which the system adheres to these assumptions de-
termines how accurate the results are and what computational
effort is required to generate them. Traditional numerical in-
tegration techniques typically make assumptions that tend to
be violated by hybrid system models.
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In addition, the hierarchical structure of the models yields
the following two observations. Often, high-level modes
have very slow changing dynamics, while low-level detailed
models may possess fast changing dynamics. Multiple
agents in a model may be decoupled in the continuous sense,
yet interact through discrete messaging. Both observations
may be used to increase efficiency of simulators.

Therefore, novel simulation techniques, specific to hierar-
chical hybrid systems are warranted. The need for special-
ized simulation tools has been recognized to some degree
in the literature [41], [42]. Several hybrid system simula-
tors have been introduced (see, for example, Modelica [43],
ABACUSS [44], 20-sim [45], SHIFT [22], and [46], as
well as others reviewed in [42]). Most of the previous re-
search has focused on properly detecting and locating dis-
crete transitions, while largely ignoring the remaining issues.
In this section, we describe three techniques that exploit the
hierarchical structure of hybrid system models to provide in-
creased accuracy and efficiency during simulation.

1) Accurate Event Detection:The problem of accurately
detecting and localizing the occurrence of transitions when
simulating hybrid systems has received an increased amount
of attention in recent years. Formally, theevent detection
problemis posed as follows. Given a system

if g(s) 0
if g(s) 0

(3)

where the mode and is the
continuous (or data) state, one would like to simulate the flow
of according to until the first time, , that the event

occurs. We assume that initially
meaning that is the active flow. Additionally we assume
that the guard is true initially.

It is generally agreed that any algorithm that addresses this
problem should possess the following attributes:

1) The algorithm should be guaranteed to detect an event
if one occurs and guaranteed to not return false posi-
tives.

2) If more than one event occurs in a given time interval,
the algorithm ought to be capable of determining and
reporting thefirst event.

3) Once it is determined that an event has occured, the
algorithm should be able to localize precisely the time

at which it occured.
4) Provided all of the above criteria are fulfilled, the al-

gorithm should be as efficient as possible.
Early event detection methods, such as [47]–[50], lack

rigor and are not guaranteed to correctly detect an event in
many situations. More recent approaches (see [51] and [52],
for example) satisfy the first three objectives in most situ-
ations while being reasonably efficient. However, a situa-
tion in which nearly all current simulators fall short is when
switches occur near model singularities. Since the step-size
selection scheme for the integration is typically independent
of the event detection algorithm, it is entirely possible that
the integrator will take a step into the region where
is undefined. If the particular integration method has an in-

Fig. 6 Cases 1 and 2 illustrate situations in which naive simulators
can fail to detect transitions by selecting integration points which
completely “miss” the guard set; Case 3 depicts a situation in
which even sophisticated methods fail, when the event occurs near
a region where the differential equation has a singularity at which
the right side cannot be evaluated.

termediate step that requires evaluating the derivative at this
state inside the singular region, a floating point exception is
generated and the simulation fails abruptly. Some of these
problematic situations are illustrated in Fig. 6.

We have developed a method [53] guaranteed to detect
enabling of all transitions, including those occuring near
singular regions. We attempt to overcome this problem by
treating the event detection problem as a control system
design problem. We consider the continuous dynamics of
the system and the numerical integration method (we use
Linear Multistep Methods—see [54] for further details)

(4)

as our collective dynamic system, whereis the time of the
th simulation step, is the value of the state at ,

is the simulation step size, and is
some weighted combination of past values of the derivative
which approximates the flow on [ ].

Returning to our control system analogy, the integration
step size is treated as an input and the value of the transi-
tion guard, , or switching function is the output.
The task at hand is to integrate the ordinary differential equa-
tion (ODE) until the boundary of the guard set is reached,
taking care to never evaluate the right side of the ODE in-
side the guard set. In terms of our control system analogy,
the problem can be rephrased as: design a feedback law that
zeros the output with no overshoot. The resulting solution
is essentially an Input/Output Linearization in discrete time.
For a linear guard the output dynamics would be

(5)

selecting the step sizeas

(6)

results in (5) appearing as . By selecting the con-
stant we are ensured while maintaining

. Thus, the simulation settles to the transition sur-
face without overshooting it and crossing into the singular
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Fig. 7 The simulation takes successively smaller steps to properly
locate the point at which the vehicle clips the corner.

region. This technique is illustrated in Fig. 7 where a vehicle
is trying to go around a corner and the simulation must detect
if it clears the corner. One can see how the simulation con-
verges onto the exact point at which the collision occured.

2) Multirate Simulation: Many systems, especially
hierarchical ones, naturally evolve on different time scales.
For example, the center of mass of an automobile may be
accelerating relatively slowly compared with the rate at
which the crankshaft angle changes; yet the evolution of the
two are intimately coupled. Despite this disparity, traditional
numerical integration methods force all coupled differential
equations to be integrated using the same step size. The
idea behind multirate integration methods [55], [56] is to
use larger step sizes for the slow changing sets of differ-
ential equations and smaller step sizes for the differential
equations evolving on the fast time scale. Such a strategy
increases efficiency without compromising accuracy. Areas
of application include simulating integrated circuits and
molecular and stellar dynamics [57]–[59]. Despite the seem-
ingly natural connection, they have never previously been
used in hierarchical hybrid systems simulation. In [60], we
introduce a multirate algorithm for simulating hierarchical
hybrid systems.

3) Multiagent Simulation:Multiagent hybrid systems
are sets of interacting hybrid systems. In the case of the
automated highway example, each vehicle may be modeled
as an individual agent; however, one may like to consider
the dynamics of an entire group of vehicles collectively to
see how they interact. The continuous dynamics of each
vehicle is physically decoupled from that of the other agents,
and typically they operate independently. However, certain
important discrete events may depend on the state of two
or more agents. Examples of this would be when two cars
come dangerously close, one car informs a group of vehicles
that it is merging into the platoon, etc. Most multiagent

systems of this form, when modeled in CHARON, have the
following mathematical structure:

(7)

(8)

(9)

where and are the continuous states of agent 1 and agent
2, their dynamics are given by the flows and

, and the predicate guards a tran-
sition for one or both agents. Note that each agent’s ODEs
are decoupled; however, coupling is introduced through the
guards.

From the point of view of simulating the continuous
dynamics, it is not necessary to synchronize the integration
rates of the two cars, since they are decoupled. Each set of
ODEs should maximize the tradeoff between accuracy and
efficiency by selecting the largest possible integration step
size that is able to recreate that agents’ dynamics within some
acceptable user-specified error tolerance. Unfortunately,
properly detecting the occurrence of events, , re-
quires that the value of the state be reported in a synchronized
fashion. Traditionally, simulators compute the best step size
for each agent and then take the minimum as a global step
size. This can result in significant inefficiencies.

Our goal is to simulate each agent with a different step
size while still ensuring proper event handling. The idea is to
allow the simulation for each agent to proceed independently
when no events are about to occur. Only when events seem
likely do we adaptively select the step sizes to bring all of the
agents into synchronization to properly detect the event.

In the case of agents, our approach to this problem, re-
ported in [61], is to define local clocks, and
step sizes , one for each agent. The step sizes are
selected based on the system dynamics so as to simultane-
ously synchronize the local clocks and detect the event using
the control theoretic technique of I/O linearization.

Fig. 8 and 9 illustrate how the simulation for two agents
might proceed. Fig. 8 shows the trajectories of the two
cars. The simulation tries to detect when the cars collide.
Fig. 9 displays how the step sizes are selected indepen-
dently throughout most of the simulation. When the system
approaches an event, the local clocks automatically syn-
chronize.

4) Distributed Simulation:The main idea behind dis-
tributed simulation is to get speedup by using multiple
computing resources, since simulations of complex systems
are normally very slow. Distributed simulation techniques
are categorized as conservative or optimistic based on how
local clocks are synchronized. If the local clock of the agent
always advances and does not go backward, it isconser-
vative simulation; otherwise, it isoptimistic simulation.
Conservative simulation techniques ensure that the local
clock of the agent either advances or stops, but does not
roll back. In optimistic simulation, the focus is to exploit
possible parallelism as much as possible by allowing each
agent to run at a different speed without the guarantee that
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Fig. 8 The trajectories of the two cars in the plane.

Fig. 9 Step sizes used for the two cars depicted in Fig. 8. The step sizesh andh are selected
independently away from the constraint, but are brought into synchronization when an event is
impending.

no event occurs between and when its local clock
is advanced from to . If an event that occurred at
time gets recognized by the agent at, where ,
the simulator provides a rollback operation by restoring the
local clock to an earlier time such that the eventcan be
handled if and when it occurs. Note that the eventmay not
occur at all if rollbacks are propagated to other agents so
that the event becomes no longer possible.

Our approach to simulate hybrid systems in a distributed
fashion is to use more computing resources by exploiting

inherent modularity of systems described in CHARON. By
modularity, we mean two things. One is behavioral modu-
larity captured by mode and the other is architectural mod-
ularity by agent. One way to exploit mode-level modularity
within a single agent is to use multiple rates for the simula-
tion of the same agent as described in Section V-A2. Another
way is to distribute atomic agents to exploit agent-level mod-
ularity. When the agents are distributed, they need to syn-
chronize to update their states as the agents share informa-
tion. Here, the challenge is how to reduce synchronization
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Fig. 10 The distanced between the two platoons.

overheads among distributed agents. We briefly describe our
conservative algorithm and optimistic algorithms.

In a conservative approach, we decompose functions into
subfunctional blocks, and the simulator allows the agent to
execute the next block only when all the agents complete the
current block. Although our conservative approach allows to
simulate hybrid systems, the disadvantage is that overhead re-
sulting from communications degrades the possible perfor-
mance gain from distributing computations. Thus, we can get
speedup only in simulating very computation-oriented hybrid
systems. Our optimistic simulation algorithms are to address
the overhead problems. The main features of the algorithms
are as follows. First, to reduce communication overhead, we
let agents synchronize just before the new value of a shared
variable is necessary instead of communicating every update
round.Second, to reducecomputationoverheaddue tonumer-
ical integration, we simulate the agent with its approximated
polynomialdynamicsandresolvethepossiblemissesofevents
with a rollback operation. This allows each agent to execute
its computation without integrating the shared variables con-
trolled by other agents. Our approach isoptimisticin the sense
that each agent goes forward even when there is no guarantee
that their clocks do not have to go backward.

5) Case Study:We now consider simulation of the pla-
toon controller under normal conditions. Fig. 10–12 are snap-
shots of the CHARON plotter and show the simulation results
for the following scenario. Initially, the distance between the
two platoons is large, and the platoonis moving faster than
the platoon in front ( ) and is therefore closing the gap.
We let the velocity of the platoon in front be a sinusoidal
function of time starting at an initial value 20. One can see
from the figures that the controller of platoon, initially in
the mode “track optimal velocity,” first decreases the gap be-
tween the two platoons by accelerating. When its distance to
the preceding platoon becomes small, the controller slowly
decelerates and switches to mode “track velocity of previous
car” approximately at time 8.2. The controller then tries to

follow the platoon in front at some constant distance. Addi-
tional simulation trace plots of this example can be found in
[6].

B. State-Space Exploration Techniques

1) Exact Reachability Using Requiem:Formal verifica-
tion of safety requirements of hybrid systems requires the
computation of reachable states of continuous systems.Re-
quiem is a Mathematica package that, given a nilpotent linear
differential equation and a set of initial conditions, symbol-
ically computes the exact set of reachable states. Given var-
ious classes of linear differential equations and semialgebraic
sets of initial conditions, the computation of reachable sets
can be posed as a quantifier elimination problem in the de-
cidable theory of reals as an ordered field [62]. Given a nilpo-
tent system and a set defined by polynomials inequalities,
Requiemautomatically generates the quantifier elimination
problem and invokes the quantifier elimination package in
Mathematica 4.0. If the computation terminates, it returns the
quantifier free formula describing the reachable set. More de-
tails can be found in [62]. The entire package is available at
www.seas.upenn.edu/hybrid/requiem.html.

Parametric analysis using Requiem:We demonstrate
the use ofRequiemon the platoon controller described ear-
lier. The experimental nature of the current quantifier elimi-
nation package makes it impossible to apply it to the system
described by (1). We thus simplify the controller with equiva-
lent dynamics, which controls the acceleration of the platoon

instead of its derivative. This approximation results in the
three dimensional system described by

(10)

We treat the acceleration of the preceding platoon as
a parametric disturbance and control the accelerationof
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Fig. 11 The accelerationa of the platooni.

Fig. 12 The velocity of the platooni and the preceding platoon (i� 1) (the platooni moves faster).

the following platoon. The problem is to find the set of condi-
tions on the parameter set and the state variables,
which would lead to a collision ( ) when we apply a
control of the form where and are integer con-
stants. We useRequiem’s parametric backward reachability
function to obtain the quantifier free formula. By giving spe-
cific values to the parameters and initial conditions, we can
see whether the formula reduces totrueor false. For example,
we can prove the expected result that when the vehicles are
started close to each other ( ) and the control parameters

and are positive, collision is unavoidable, whereas ifand
are negative, collision does not occur. The entire example

and the output is available at www.seas.upenn.edu/hybrid/re-
quiem/ReqIEEE.html.

2) Predicate Abstraction:In the world of program
analysis, predicate abstraction has emerged to be a powerful
and popular technique for extracting finite-state models
from complex, potentially infinite state, discrete systems
(see [63]–[66] for a sampling of this active research area).

A verifier based on this scheme requires three inputs, the
(concrete) system to be analyzed, the property to be verified,
and a finite set of predicates over system variables to be
used for abstraction. An abstract state is a valid combination
of truth values to the predicates, and thus corresponds
to a set of concrete states. There is an abstract transition
from an abstract state to an abstract state , if there is
a concrete transition from some state corresponding to
to some state corresponding to. The job of the verifier
is to compute the abstract transitions and to search in the
abstract graph looking for a violation of the property. If
the abstract system satisfies the property, then so does
the concrete system. If a violation is found in the abstract
system, then the resulting counterexample can be analyzed
to test if it is a viable execution of the concrete system. This
approach, of course, does not solve the verification problem
by itself. The success crucially depends on the ability to
identify the “interesting” predicates, either manually or by
some automated scheme and on the ability of the verifier
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to compute abstract transitions efficiently. Nevertheless,
it has led to opportunities to bridge the gap between code
and models and to combine automated search with user’s
intuition about interesting predicates. Tools such as Bandera
[67], SLAM [68], and Feaver [69] have successfully applied
predicate abstraction for analysis of C or Java programs.

Inspired by this trend, we develop algorithms for invariant
verification of hybrid systems using discrete approxima-
tions based on predicate abstractions. Consider a hybrid
automaton with continuous variables and a set of
locations. Then the continuous state-space is . For
the sake of efficiency, we restrict our attention where all
invariants, switching guards, and discrete updates of the
hybrid automaton are specified by linear expressions and
the continuous dynamics is linear, possibly with uncertain,
bounded input. For the purpose of abstraction, the user
supplies initial predicates , where each predicate
is a polyhedral subset of . In the abstract program, the

continuous variables are replaced bydiscrete Boolean
variables, one Boolean variable for each predicate . A
combination of values to theseBoolean variables repre-
sents an abstract state corresponding to a set of continuous
states and the abstract state space is . Our verifier
performs an on-the-fly search of the abstract system by
symbolic manipulation of polyhedra.

The core of the verifier is the computation of the transitions
between abstract states that capture both discrete and contin-
uousdynamicsof theoriginalsystem.Computingdiscretesuc-
cessors is relatively straightforward and involves computing
weakest preconditions and checking nonemptiness of an in-
tersection of polyhedral sets. The implementation attempts to
reduce the number of abstract states examined by exploiting
the fact that each abstract state is an intersection oflinear
inequalities. For computing continuous successors of an ab-
stract state , we use a strategy inspired by the techniques
used in CHECKMATE [33] and d/dt [34]. The basic strategy
computes the polyhedral slices of states reachable fromat
fixed times for a suitably chosen, then takes the
convex-hull of all these polyhedra to overapproximate the set
of all states reachable from. However, while tools such as
CHECKMATE and d/dt are designed to compute a “good” ap-
proximation of the continuous successors of, we are inter-
ested in testing if this set intersects with a new abstract state.
Consequently, our implementation differs in many ways. For
instance, it checks for nonempty intersection with other ab-
stract states of each of the polyhedral slices and omits steps
involvingapproximationsusingorthogonalpolyhedraandter-
mination tests (see [34]).

Postulating the verification problem for hybrid systems as
a search problem in the abstract system has many benefits
compared to the traditional approach of computing approxi-
mations of reachable sets of hybrid systems. First, the expen-
sive operation of computing continuous successors is applied
only to abstract states and not to intermediate polyhedra of
unpredictable shapes and complexities. Second, we can pre-
maturely terminate the computation of continuous successors
whenever new abstract transitions are discovered. Finally, we
can explore with different search strategies aimed at making

progress in the abstract graph. For instance, our implementa-
tion always prefers computing discrete transitions over con-
tinuous ones. Our early experiments indicate that improve-
ments in time and space requirements are significant com-
pared to a tool such as d/dt. A more detailed description of
our predicate abstraction technique for hybrid systems can
be found in [70].

Verification of the platoon controller using predicate
abstraction: To formally prove the safety property of this
longitudinal controller, we make use of the reachability
method using predicate abstraction. Here, we focus only on
two regions which are critical from a safety point of view:
“track optimal velocity” ( and ) and
“track velocity of previous car” ( and ).
We include a thickening parameter into the model
to add nondeterminism to it. The two regions under con-
sideration overlap allowing the controller to either use the
“track optimal velocity” controller or the “track velocity
of previous car” controller in this-thick region. Besides
adding some nondeterminism to the model, the thickening
parameter also provides improved numerical stability to the
simulation and reachability computation, as it is numerically
hard to determine the exact time at which a switch occurs.

The respective control laws and are as follows:

(11)

(12)

Note that these regions correspond to situations where the
platoon in front moves considerably slower; moreover, the
second region is particularly safety critical because the inter-
platoon distance is smaller than desired.

To construct the discrete abstract system, in addition to
the predicates of the invariants and guards, we include some
predicates over the distance variable to be able to separate
the bad region from the reachable set:

. The total number of initial predicates is 11. For
the initial set specified as

, the tool found 14 reachable abstract
states and reported that the system is safe. Note this property
has been proven in [71] using optimal control techniques for
individual continuous modes without mode switches. Here,
we prove the property for all possible behaviors of the con-
troller.

VI. THE CHARON TOOLKIT

In this section, we describe the CHARON toolkit. Written
in Java, the toolkit features an easy-to-use graphical user in-
terface (GUI), with support for syntax-directed text editing,
a visual input language, a powerful type-checker, simulation,
and a plotter to display simulation traces. The CHARON GUI
uses some components from the model checker JMOCHA
[72], and the plotter uses a package from the modeling tool
PTOLEMY [23].

The editor windows highlight the CHARON language key-
words and comments.Parsing on the flycan be enabled or dis-
abled. Incaseofanerrorwhile typing, the firsterroneoustoken
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Fig. 13 The visual input tool of CHARON. The arrows depict variable renamings.

will behighlighted in red.Further,apop-upwindowcanbeen-
abled that tells the user what the editor expects next. Clicking
one of the pop-up options, the associated text is automatically
inserted at the current cursor position. This allows the user not
only to correct almost all syntactic errors at typing but also to
learn the CHARON language.

The CHARON toolkit also includes a visual input lan-
guage capability. It allows the user to draw agent and mode
definitions at a given level of hierarchy. The visual input tool
is depicted in Fig. 13, showing one level of the platoon con-
troller from Fig. 1. By clicking on the subagents, the user
can explore the lower levels of hierarchy. The interpreter of
the visual input translates the specification into text-based
CHARON source code using an intermediate XML-based
representation.

Once a set of edited and saved CHARON language files
exists, the user can simulate the hybrid system. In this case,
the CHARON toolkit calls the parser and the type-checker.
If there are no syntactic errors, it generates aproject context
that is displayed in a separate project window that appears
on the left side of the desktop, as shown in Fig. 14, which
displays the same model as Fig. 13.

The project window displays the internal representation
of CHARON in a convenient tree format. Each node in
the tree may be expanded or collapsed by clicking it. The
internal representation tree consists of two nodes:
and . They are initially collected from the associated
CHARON files.

A CHARON specification describes how a hybrid system
behaves over time. CHARON’s simulator provides a means
to visualize a possible behavior of the system. This informa-
tion can be used for debugging or simply for understanding
in detail the behavior of the given hybrid system description.

The simulation methodology used in the CHARON
toolkit, which is depicted in Fig. 15, resembles concepts
in code generation from a specification. Since CHARON
allows the user to provide external Java source code, the sim-
ulator needs to be an executable Java program. CHARON
has a set of Java files that represent a core simulator. Given a
set of CHARON files, Java files are automatically generated
that represent a Java interpretation of the CHARON spec-
ification of a hybrid system. They are used in conjunction
with the predefined simulator core files and the external Java
source code to produce a simulation trace.

24 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



Fig. 14 The editor frame on the right side of the CHARON desktop and the corresponding
project frame on the left.

Fig. 15 The simulation methodology of CHARON.

The CHARON plotter allows the visualization of a sim-
ulation trace generated by the simulator. It draws the value
of all selected variables using various colors with respect to
time. It also highlights the time that selected transitions have
been taken. The simulation results obtained in Fig. 10–12
have been produced using the CHARON plotter.

In addition, the simulator checksassertionsthat are placed
in the CHARON model by the user. Assertions can be added
to any mode or agent in the model. They are state predicates
over the variables of the mode or agent and are supposed to
be true whenever the mode is active or, for agents, always.

If an assertion is violated during a simulation, the simulator
stops and the trace produced by the simulator can be used to
find the source of the violation.

More information on the CHARON toolkit, along
with a preliminary release, is available for free at
www.cis.upenn.edu/mobies/charon/.
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