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Abstract

We address the problem of testing complex reactive control systems
and validating the effectiveness of multi-agent controllers. Testing and
validation involve searching for conditions that lead to system failure by
exploring all adversarial inputs and disturbances for errant trajectories.
This problem of testing is related to motion planning. In both cases, there
is a goal or specification set consisting of a set of points in state space that
is of interest, either for finding a plan, demonstrating failure or for valida-
tion. Unlike motion planning problems, the problem of testing generally
involves systems that are not controllable with respect to disturbances
or adversarial inputs and therefore, the reachable set of states is a small
subset of the entire state space. We choose to apply sampling-based al-
gorithms to the testing and validation problem. Our work is based on
the Rapidly-exploring Random Trees (RRT) algorithm. First we analyse
some of the factors that govern the exploration rate of the RRT algo-
rithm. The analysis serves to motivate our enhancements. Then we pro-
pose three modifications to the original RRT algorithm, suited for use on
uncontrollable systems. First, we introduce a new distance function which
incorporates information about the system’s dynamics to select nodes for
extension. Second, we introduce a weighting to penalize nodes which are
repeatedly selected but fail to extend. Third, we propose a scheme for
adaptively modifying the sampling probability distribution, based on tree
growth. We demonstrate the application of the algorithm via several ex-
amples and provide computational statistics to illustrate the effect of each
modification. The final algorithm is demonstrated on a 25 state exam-
ple and results in nearly an order of magnitude reduction in computation
time when compared with the traditional RRT. Our algorithms are also
applicable to motion planning for systems that are not small time locally
controllable.
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1 Introduction

As the use of logic-based or reactive control laws grows in both robotics and
other fields, so does the need for automated design and analysis tools. The focus
to date in the automated safety verification literature has been on the solution of
the reachability problem, initially through symbolic methods (e.g., [1, 38]) and
later through numerical techniques (e.g., [45, 18]). However, the class of systems
for which the reachability problem is tractable is quite limited in both expres-
siveness and dimensionality. An alternative approach to exhaustively proving
safety is to simply search for a single counter example – a series of inputs, distur-
bances or parameters that causes a system to fail. We term this semi-decision
approach the Testing Problem.

Inspired by the connections between the Testing Problem for complex con-
trol systems and the Motion Planning problem, we have recently applied the
Rapidly-exploring Random Tree (RRT) algorithm to the Testing Problem [21, 4]
with considerable success. The RRT algorithm is an incremental, randomized
search algorithm which explores state space fast and uniformly. However, the
Motion Planning and Testing problems are different. Perhaps the most sig-
nificant difference between the two lies in the nature of the system dynamics
in each case. Robotic systems are almost always controllable (by design), so
the reachable space is often the entire free space. With the exception of any
workspace obstacles, whose configurations are known in advance, the tree can
be expected to extend to fill the entire state space. On the other hand, when
we test complex control systems, it is frequently with respect to disturbances or
adversarial inputs. These systems are frequently not controllable with respect
to disturbances or adversarial inputs — in fact, the reachable set is usually a
tiny fraction of the entire state space.

In such systems, (1) the lack of an obvious metric to estimate connection
time, (2) the natural Voronoi bias of the RRT algorithm and (3) the tradi-
tional uniform sampling strategy, lead to a slow exploration rate. With the
goal of increasing the exploration rate for complex dynamic systems, we pro-
pose three modifications to the original RRT algorithm. First, we develop a
new distance function which encodes local information about the system’s dy-
namic constraints with a first order approximation (improved metric). Second,
because the reachable state space is generally a small fraction of the total state
space, we introduce a weighting factor which penalizes the repeated extension
of boundary nodes (mitigate Voronoi bias). Finally, we propose a scheme for
adaptively modifying the sampling probability distribution between the tradi-
tional uniform distribution and heavily biased toward the specification set based
on tree growth (adaptive sampling).

The paper is organized as follows. In Section 2.1 we formally define the
testing problem. Section 2.2 reviews the original RRT algorithm and the most
relevant literature. Section 3 defines and analyzes the factors affecting the
exploration rate. In light of this analysis, Section 4 examines three key features
of the traditional RRT algorithm which are troublesome for testing problems;
proposes methods to remedy them and presents simple illustrative examples,
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complete with comparative computational statistics. A new algorithm unifying
the enhancements is presented in Section 5.1. The algorithm is used to solve a
multi-agent pursuit-evasion problem and performance statistics are discussed in
Section 5.2. Concluding remarks follow in Section 6.

2 Background and Related Work

2.1 Problem Statement

Definition 2.1 We define a Finite Time Control System as a tuple C =
(X,U, T, Init, f) where

• X ⊂ Rn is a set of free state variables;

• U ⊂ Rm is a compact set of input values;

• T = [t0, tf ] ⊂ R is a compact time interval the system evolves over;

• Init ⊂ X is a compact set of possible initial conditions; and

• f : X × U → Rn is a vector field which prescribes the time derivative of
the state variables.

We are generally interested in systems with collections of rigid bodies with very
complicated dynamics, especially high-dimensional continuous systems or hy-
brid (discrete/continuous) and switched systems where f may be a non-smooth
function of x. We do not impose any structure on the nature of the dynamics
(except assuming that solutions exist in the sense of Filippov [48], which permits
sliding modes). We use the term “input” in the most general sense in that it
can include yet unspecified feedback control inputs, human-in-the-loop inputs,
and disturbances.

Problem 2.2 Testing Problem: Given a tuple (C, x0, S), where

• C = (X,U, T, Init, f) is a finite time control system,

• x0 ∈ Init, and

• S is a specification set,

the goal is to determine an open loop control law U : T → U such that ∃t ∈ T
for which x(t) ∈ S.

In other words, the goal is to determine a counter-example – an input sequence
which will cause the system to fail by entering S – if one exists. However, in
order to make the problem algorithmically tractable, instead of searching the
set of all possible functions U : T → U , the search must be restricted to some
subset of functions with finite dimensional parameterization [12].

We make three assumptions that simplify the presentation of the key ideas
in the paper without restricting the scope in a significant way. First, we will
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assume there is a simple test that can be applied to determine if a point in Rn is
a member of X ⊂ Rn. Second, assume the specification set S can be defined as
the sub-level set of some function S = {x|x ∈ X, s(x) ≤ 0}. Finally, we restrict
our search over U to piecewise constant functions of time with k segments, each
of time duration ∆t. Thus, instead of the continuous map U , we consider the
search over Ū : T → U , as the search for a k-vector of parameters. With ui ∈ U

ū = [u1, u2, . . . , uk]T

so the input u(t) is given by

u(t) = ui ∈ U if t0 + (i− 1)∆t ≤ t < t0 + (i)∆t

for i = 1, . . . , k.

2.2 Related Work

While there has been a great deal of work on this problem, complete meth-
ods for robot motion planning have prohibitive complexity. It was shown that
the generalized mover’s problem is PSPACE-hard [47]. Explicit construction of
configuration space is computationally impractical. This has motivated many
researchers to focus on sampling-based randomized algorithms that can solve
many challenging high-dimensional problems efficiently at the expense of com-
pleteness.

In the Probabilistic Roadmap (PRM) method and its variants [29, 31, 2, 32,
30, 10], a network of paths called a roadmap is constructed in the configuration
space by generating random configurations and attempting to connect pairs of
nearby configurations with a local planner (preprocessing phase). After con-
struction of the roadmap, the user-specified initial configuration and the goal
configuration are connected to the roadmap and a solution path is obtained
by a graph-search algorithm (query phase). Modifications to the sampling of
random configurations have been suggested such as visibility-based PRM [49],
Gaussian sampling [7], the bridge test [26] and the medial axis method [25, 52].
Single-query PRM, called Lazy PRM is proposed in [6]. In Lazy PRM, the col-
lision check is conducted only in the query phase and the roadmap is updated
as the planner searches a solution path to minimize the number of collision
checks. Recently, the influence of the sampling measure and sampling source on
the PRM planner’s performance was presented in [28] showing the source has
small impact on a planner’s performance as compared to the measure. If we
can design a local planner that connects pairs of configuration satisfying corre-
sponding constraints, a feasible path is obtained by simple concatenation of the
successive path segments. Therefore, the PRM method can be easily applied to
virtually any type of holonomic robots. However, the connection problem can
be as difficult as designing a nonlinear controller, particularly for complicated
nonholonomic and dynamic systems.

The problem of finding a suitable trajectory and control inputs to drive
a robot from an initial state to a goal state while satisfying physically-based

4



dynamic constraints has been an active research area in many fields. The de-
coupled approach, in which one solves a basic path planning problem followed by
finding a trajectory and controller that satisfies the dynamics, has been applied
successfully to a variety of problems. However, decoupled approaches often fail
to find a feasible solution due to the system dynamics or constraints on control
inputs. It is often the case that kinematic and dynamic constraints have to
be taken into consideration simultaneously. This type of problem is known as
kinodynamic motion planning [20]. For planning under differential constraints,
expansive space trees (ESTs) [27] assign a weight to each node indicating how
densely the neighborhood of the node has already been explored and choose a
node to extend with probability inversely proportional to the weight. PDST-
EXPLORE algorithm uses nonuniform subdivision of state space and sampling
of paths rather than states [36, 37].

A Rapidly-exploring Random Tree (RRT) is a randomized algorithm that
is designed for a broad class of motion planning problems [40, 41]. The ad-
vantage of RRT algorithm is that they work directly with the set of admissible
inputs and are therefore directly applicable to systems with complex dynamics.
It is well suited to the problem of quickly searching high-dimensional spaces
that have both algebraic and differential constraints. The key idea is to bias
the exploration toward unexplored portions of the space by randomly sampling
points in the state space and incrementally pulling the search tree toward them,
reducing the size of largest Voronoi regions as the tree grows. Therefore, the
graph explores the state space uniformly and quickly. The RRT algorithm has
experienced widespread success in solving a variety of high dimensional and
nonlinear problems in motion planning [34, 14, 15].

We base our approach on the Rapidly-exploring Random Tree (RRT) algo-
rithm. A very basic algorithm is given in Algorithms 1 and 2, where ρ is some
suitable metric and pdf is a probability distribution. The RRT algorithm is
attractive because it works directly in the space of admissible inputs making
them suitable for systems with dynamic constraints and because it is probabilis-
tically complete [40]. However, surprisingly little attention has been directed at
predicting or measuring the rate at which the trees explore the space.

There exists much work on safety verification. Reachability analysis has been
an active research area. Symbolic methods [1, 24, 38, 23] are found for very lim-
ited classes of hybrid systems. Approximate reachability computation relies
on numerical methods such as Hamilton-Jacobi equation [45, 50, 44], flow-pipe
approximation [16, 17, 18], ellipsoidal calculus [35, 8], and polyhedral approx-
imation [19, 3]. The barrier certificates method, similar to Lyapunov stability
results, is proposed in [46]. However, construction of barrier certificates is gen-
erally not easy and a computational technique is known only for polynomial
systems. The class of hybrid systems for which the reachability problem is
tractable is quite limited in both expressiveness and dimensionality. The pri-
mary reason for this limitation stems from the difficulties explicitly representing
and manipulating the reachable set. Such an approach overcomes traditional
limitations because it makes no attempt to explicitly represent the reachable
set. The drawback however is that it is a semi-decision method – the test is
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inconclusive if no counter example is found. However, for non-linear, high di-
mensional systems there is at this time no alternative method to verify safe
operation.

The approach of using the RRT algorithm to analyze logic-based control sys-
tems is recent. In [22] RRT algorithm was used to design trajectories of hybrid
systems. The first published work using the RRT algorithm for analyzing hybrid
systems is [9, 42]. In a similar vein, a blimp system control law was validated
under unpredictable but bounded disturbances [33]. In [5], the reachable set for
aircraft collision avoidance problem was obtained and several extensions of the
RRT approach were mentioned. We have applied a variant of this method [4]
to testing hypotheses and establishing properties of biological networks.

Algorithm 1 Generate RRT: T
Initialize RRT: T .addVertex(x0)
while 6 ∃x ∈ T such that s(x) ≤ 0 do

Extend(T )
end while

Algorithm 2 Extend(T )

xrand ∈ X ← pdf()
xnear ← arg minxj∈T ρ(xj , xrand)

unew = arg minu∈Ū{ρ(xnear +
∫ ∆t f(x, u)dt, xrand)}

xnew = xnear +
∫ ∆t f(x, unew(t))dt

T .addVertex(xnew)
T .addEdge(unew, xnear → xnew)

There have been several enhancements to the basic RRT algorithm. In [13] a
method for penalizing the repeated selection of collision prone nodes for exten-
sion is introduced. In [43] a node selection strategy is described which increases
the natural Voronoi bias of the method for the purposes of dispersion reduc-
tion. In [51, 53] adaptive RRT methods for problems with complex obstacles
are addressed. However, no approach is able to reliably reduce the dispersion
(which must be measured within the reachable set) for uncontrollable systems
with dynamic constraints. Biasing the sampling toward regions close to the
goal state has been tried in [41], [42] and [9] with some success. However the
sample bias factor is fixed a priori and it can lead to difficulties in non-convex
systems because of the presence of local minima. In [33], a metric accounting
for under-actuated dynamics is suggested but is specific to the aerial robots ex-
ample considered there. In [21] the Rapidly-exploring Random Forest of Trees
(RRFT) algorithm was introduced which searches over time invariant parame-
ters by planting many RRTs at a sampling of parameter values. All the trees
are grown simultaneously. Individual trees may be terminated if they fail to
grow at a sufficient rate.
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3 Exploration rate

The goal of the testing problem is to find a sequence of inputs from x0 to S as
quickly as possible. While easily measurable and of great practical importance,
the required time to find a solution for a given system strongly depends on the
location of S and x0 in X. Alternatively, because a desirable feature of any
sampling-based algorithm is to rapidly explore the state space, a measure of
exploration rate would be more useful and perhaps more robust as a performance
measure. In this section, we define what we mean by “exploring” the state space,
and analyze the factors that influence the rate of exploration. The analysis
points to some methods of improving the exploration rate.

We would like to determine what fraction of the reachable set a tree T has
explored. However, because a tree node xk is a point it has measure zero and,
therefore, a collection of tree nodes can never fill the state space. Instead, define
the set of states that could be reached from a node xk(tk) in a single iteration
with time step ∆t as

R(xk, tk,∆t) = {x ∈ X|∃u ∈ U, x = xk +

∫ tk+∆t

tk
f(x, u)dt}. (1)

Note that this set has a non-zero measure, allowing us to discuss its volume
which can be related to the fraction of the space that can be explored from that
node. This notation has many uses, as illustrated in Figure 1.

• The set of possible locations for xnew in a single iteration isR(xnear, tnear,∆t)
where xnear is selected to minimize some metric ρ(xnear, xrand).

• The reachable set, R(x0, t0,∆T ), where ∆T = tf−t0 is the set of all states
that can possibly be explored from initial condition x0 within the given
time interval T = [t0, tf ].

• The explored set is defined by R(TK ,∆t) =
⋃K−1

k=0 R(xk, tk,∆t). It is the
set of states that the tree can possibly explore in the next iteration, from
any of the K nodes in a tree. If a state within the specification set S (or
goal) is located within R(TK ,∆t), the algorithm can terminate.

Using this notation we define the explored volume fraction of a tree with K
nodes as

CK =
µ(R(TK ,∆t))

µ(R(x0, t0,∆T ))
, (2)

the ratio of the volume of the explored set to that of the reachable set, where
µ(∗) is the measure (volume) of the set.

When a new node, xK is added to the tree TK we can define the change in
the explored volume fraction as the growth of the explored volume fraction

gK+1 =
µ

(

R(xK , tK ,∆t)−R(TK ,∆t)
)

µ(R(x0, t0,∆T ))
. (3)
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Figure 1: An illustration of R(x0, t0,∆T ), R(xnear, tnear,∆t) and R(TK ,∆t)
.

Since, with the exception of x0, the location of each new node is a random
variable, it is meaningful to discuss the change in the expected value of the
explored volume fraction, Ĉ or the growth of the explored volume fraction ĝ:

ĈK+1 = ĈK + ĝK+1 = C1 +

K+1
∑

k=2

ĝk (4)

In order to understand the dynamics of Ĉ, we need to know how gK+1 varies
with xrand (illustrated in Figure 2). To that end we partition the state space
into three regions. Let int(TK) be the set of all nodes that do not support the
boundary of R(TK ,∆t).

1. Interior: xrand ∈
⋃

k∈int(TK ) R(xk, tk,∆t). In this case xrand is selected in

the interior of previously explored area. No new growth results (gK+1 =
gint = 0).

2. Exterior: xrand 6∈ R(TK ,∆t). In this case xrand is selected outside of the
previously explored region and gK+1 = gext ∈ [0, gmax], depending on the
accuracy of the metric in selecting the xnear with the most potential for
extension.

3. Boundary: xrand ∈ R(TK ,∆t) −
⋃

k∈int(TK ) R(xk, tk,∆t). This case rep-

resents xrand in a boundary layer of the previously explored region. As
in the previous case gK+1 ∈ [0, gmax], except the value depends on the
location of xrand as well as xnear.

It is difficult the extent to which boundary effects mentioned in Case 3 affect the
value of gK+1 because it is a function of the current tree shape. In the interest
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Figure 2: Three possible cases for gK+1 depending on the region in which xrand

is generated.

of streamlining the analysis, let us assume the boundary region is small. Then:

ĝK+1 = P ext · gext (5)

where P ext is the probability xrand is selected in the exterior of the explored
region; and gext is the expected growth in that case. Therefore, in order to
improve ĝK+1 our algorithmic enhancements will be targeted at:

1. increasing gext by using a metric, suitable for systems with complex dy-
namics, which is more apt in selecting nodes, xnear with more potential
for growth (Section 4.1 and 4.2); or

2. increasing P ext by altering the probability distribution to generate xrand

in unexplored regions of the state space (Section 4.3).

Finally, we need a method to experimentally measure the fraction of the
explored set to evaluate the effect of our enhancements. Because the area of the
reachable set is unknown a priori, from a practical point of view it is sometimes
useful to define explored volume fraction with respect to the entire set X rather
than the reachable set in X.

CX
K =

µ(R(TK ,∆t))
µ(X)

. (6)

Even still, measuring R(xk, tk,∆t) in high dimensions and accounting for the
overlaps in computing the union is frequently impossible. For complex dynamic
systems, the volume of the explored set is often difficult to calculate. Typically
dispersion is used [39] which is loosely defined as the radius of the largest ball
in X which does not contain a tree node. Unfortunately, it is difficult to com-
pute and because, by only focusing on the largest such ball, it yields an overly
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Figure 3: The white triangle is R(x0, t0,∆T ) – the total reachable set. The light
shaded regions constitute R(TK ,∆t). Nodes selected for extension on the basis
of their distance from xrand (such as x1) may be not be ideal to grow R(TK ,∆t)
when the system is not small time locally controllable. x0 is a better candidate
for extension.

conservative estimate of explored set. Instead, we introduce a dispersion-based
explored fraction. Given a tree TK , a set of grid points G ⊂ X with spacing δx,
and some suitable metric ρ

C̄X
K (TK , G) = 1−

1

|G| · δx

∑

xg∈G

min(ρ(xg, TK), δx). (7)

We use the dispersion-based explored fraction for the purposes of monitoring
tree growth for complex dynamic systems.

4 Enhancements to the RRT Algorithm

In this section, we propose three modifications to the original RRT algorithm,
all designed to improve the expected value of the growth of the explored volume
fraction ĝK+1. Referring to Equation (5), the first two enhancements (Sec-
tion 4.1 and 4.2) modify the metric used to select an xnear in an attempt to
improve the growth per iteration when xrand is outside the explored region,
gext. This is especially challenging for systems with complex dynamics, since
there are no obvious metrics to establish temporal proximity relationships and
the reachable set is not known a priori. The third enhancement (Section 4.3),
attempts to increase the probability xrand is selected in an unexplored region of
the state space, P ext. While there exist many distributions that can accomplish
this, we choose to bias our samples near the un-reached specification (goal) set
when advantageous.
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4.1 Dynamics-based selection of proximal node

Example 4.1 Consider the trivial example

ẋ1 = 2, ẋ2 = u, (8)

where u ∈ U = [1, 2].

The reachable set R(x0, t0,∆T ), which is normally unknown can easily be com-
puted by hand in this case, and is shown as the white region in Figure 3. A
state xrand is generated and the planner must select the “closest” tree node,
xnear to attempt to connect from. Line 2 of Algorithm 2 (traditional RRT) se-
lects xnear ← x1 for extension based on proximity to xrand, as determined by a
distance metric ρ that is implicitly assumed to be a Euclidean metric. However,
none of the possible velocity vectors at that state are able to proceed in the
required direction. The closest xnew that can be generated from x1 is a state
that has already been visited x2. This results in g = 0. Despite the fact that
ρ(x0, xrand) > ρ(x1, xrand), x0 is actually more suited to grow R(TK ,∆t) to-
ward xrand because the possible velocity vectors include a direction that moves
toward xrand resulting in g = gmax. In addition to testing problems, this situa-
tion arises in a variety of robotic applications where the system is nonholonomic
(e.g., wheeled carts), and particularly in systems with unilateral constraints on
velocities (e.g., unmanned aerial vehicles). Ideally both distance and velocity
constraints should be used to estimate a “time to go”.

Since, a node, xnear can successfully connect to xrand ∈ R(xnear, tnear,∆t)
it is useful to estimate the time required to go from a possible xnear to xrand

as compared with ∆t. Therefore, we propose replacing ρ(xj , xrand) in Line 2 of
Algorithm 2 with a local first order approximation of the “time-to-go”

t2go(xj , xrand) =

{

ρ(xj , xrand)/v if v > 0
∞ if v ≤ 0

(9)

where v represents the instantaneous speed with which xrand can be approached

v = max
u∈Ū

[

−
∂ρ(x, xrand)

∂x
f(x, u)|x=xj

]

.

Intuitively t2go computes the distance from xj to xrand and divides by a first
order approximation of the speed with which the distance can be decreased,
giving t2go units of time. Note that a negative value of v implies that the
distance is actually increasing, which can be interpreted as infinite “time-to-go”
(to first order). In a given iteration if none of the existing nodes have a finite
value for t2go, one can be chosen at random or based on some secondary criteria
(such as distance as determined by ρ).

From a computational point of view, the maximization may be done by ex-
haustive search or by exploiting some problem dependent feature. For example
if f(x, u) is an affine function of u and the set U is the Cartesian product of
rectangles, the maximization is a linear program in n dimensions which can be
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Figure 4: The system dynamics of the thermostat.
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Figure 5: The solution of the thermostat counter example via the RRT using
the dynamics-based selection of proximal node (temperature vs. time).

solved efficiently. If no efficient methods exist to compute this quantity, evalu-
ating every node via this method can be intensive. In such a case, t2go can be
used as a secondary criterion to select xnear among the, for example, 10 closest
nodes according to the Euclidean metric.

We next consider an example that is from the verification community. Al-
though it is not central to robotics, it has many of the properties that are central
to multi-agent robotic systems.
Example 4.2 The hybrid automata model of a thermostat has been a popular
example in the verification literature [24]. Figure 4 shows the system model.
x = (x1, x2, x3) ∈ X ⊂ R3 where x1 is the temperature in the room, x2 is the
elapsed time, and x3 is a timer that measures the cumulative amount of time the
heater has been on for. The dynamics have two modes which denote the heater
being “on” or “off”. U consists of uon = [2, 4]; and uoff = [−3,−1]. The values
uon and uoff represent the possible heating and cooling rates in the two modes.
The conditions x1 ≤ 1 and x1 ≥ 3 enable the mode switches off → on and
on→ off respectively. In [24] a symbolic verification tool is used to answer the
question: “After an initialization period of two minutes, is it possible for the
heater to be on for more than two thirds of the total time at any point during
the first hour of operation?” Such a question may be important from an energy
consumption point of view. The specification set is

S = {x ∈ X|2/3x2 − x3 ≤ 0 ∧ −x2 + 2 ≤ 0}.

The initial conditions were mode = “on”, and xo = [2 0 0]T .
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Metric No. of Computation
Nodes Time (sec)

Euclidean 2284 376.4
t2go 1627 231

Table 1: Thermostat Example: A comparison of the use of the Euclidean metric
and t2go introduced in Section 4.1, averaged over 10 trials on a 1GHz PC.

Aside from being a classical verification example, the scenario is interesting in
its own right. First, the system has quite nontrivial dynamics, since the control
inputs do not appear in the right hand side of two of the state equations, or
the specification equations. This, together with the narrow range of U , makes
the reachable set a small subset of X. The set of possible velocity vectors at
every point is very limited making this an ideal example to demonstrate the
Dynamics-based selection of proximal node.

First the problem was solved 10 times selecting proximal nodes based on the
Euclidean metric ρ; then 10 times with the Dynamics-based selection function
t2go. In all cases, the algorithm successfully computed a counter example as
seen in Figure 5. Table 1 shows the computational statistics for two algorithms.

4.2 History-based selection of proximal node

A second situation is shown in Figure 6 where the traditional RRT is applied to
the system and, after 3 iterations, the resulting tree is shown using dark circles
and dashed line segments. The reachable set is the white region. Because the
reachable set is so small, nodes on the boundary such as x0, x1,and x2 will
tend to maintain disproportionately large Voronoi regions causing them to be
repeatedly selected as xnear. Initially, the boundary region is explored quickly.
But then, as in the figure, when xrand 6∈ R(x0, t0,∆T ), then xnear ← x1 and
xnew = x2. But since xnew is already a node in the tree, the algorithm fails to
extend the volume of the explored set R(TK ,∆t) (i.e. g = 0). Repeated failure
to extend the boundary nodes prevents the interior nodes from extending within
the reachable set.

To counter balance this Voronoi bias, we propose a weighting to prevent
the repeated failure of extension. If a node is selected as xnear in Line 2 of
Algorithm 2 and the minimization in Line 3 produces an input unew which has
been applied previously, the resulting xnew is already an element of T . When
this happens we say the node has “failed to extend”; and determine the next
best unew which extends explored region (suggested in [13]). For each xj ∈ T we
propose storing the number of times the node has failed to extend nj . This value
can be used to compute a penalty weight to discourage the repeated selection
of boundary nodes which fail to extend. Let nmin and nmax be the least and
greatest values of nj in the tree at a given iteration. The History-based weighting
is defined as
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Figure 6: The reachable space is shown as the white triangular region, and bold
circles and dashed lines are the RRT. Nodes on the boundary of the reachable
space have disproportionately large Voronoi regions, causing them to repeatedly
be selected as xnear.

H(xj , xrand; ρ) =
ρ(xj , xrand)− ρmin

ρmax − ρmin
+

nj − nmin

nmax − nmin
(10)

where ρmin = minxi∈T ρ(xi, xrand) and ρmax is defined in a similar manner.
These bounds are used to normalize the distances so that the impact of the sec-
ond term is not problem dependent. Note that any distance function, including
t2go can be substituted for ρ.

Example 4.3 The RRT algorithm is used to find trajectories of the linear dy-
namic system with bounded control inputs in the form of

ẋ = Ax+Bu+ b (11)

where x ∈ X = [−200, 200]× [−200, 200] and u ∈ U = [−10, 10]× [−10, 10].

Figure 7 shows trajectories generated by the RRT algorithm using the Euclidean
metric (left) and using the History-based weighting described above (right).
Note that reachable set is small fraction of the environment. The interior of
the reachable region with the History-based selection of proximal node method
is much more densely covered than when using the Euclidean metric. Figure 8
shows nj for each node in T . Nodes are sorted in descending order to facilitate
visualization. In the conventional RRT algorithm, a smaller portion of nodes
have disproportionately high values of nj (ones on the boundary of the reachable
set).

4.3 Adaptively biased sample generation

Both previous enhancements sought to maximize the growth of the explored
region by increasing g when xrand is generated in the unexplored region. But
Equation (5) indicates another possibility is to select a probability distribution
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Figure 7: RRT for a linear system using the Euclidean metric (left) vs. a History-
based selection of proximal node (right). After 5000 nodes the explored region
of the reachable space is much more densely covered when using the weighting.
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Figure 8: Value of nj for each node (sorted in descending order) using the
unweighted Euclidean metric (left) and History-based weighting (right).
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Figure 9: The reachable space is shown as the white triangular region, bold
circles and dashed lines are the RRT. The algorithm terminates when xnew lies
in the specification set S.

that would increase P ext – the probability a node is selected in the exterior of
the explored set X − R(TK ,∆t). However for complex systems there are two
main challenges to this: (1) computing the explored set online is difficult; and
(2) not all areas of the unexplored set are reachable.

Issue 1 can be overcome by realizing that, until the algorithm terminates,
the specification (or goal) set S lies in the unexplored region by definition and
that S has a convenient representation. Since we are seeking a trajectory to
connect x0 to S it makes sense to bias our sampling distribution inside S,
as indicated in Figure 9. Assuming we follow this strategy, Issue 2 presents a
greater challenge. Complex system dynamics can render S unreachable in which
case the problem does not have a solution. However, a potential danger is that
S is reachable but the tree fails to reach it using a biased sampling approach
due to a non-convex state space or a lack of small time local controllability.
Adaptive biasing circumvents this problem. Intuitively, biasing the sampling
distribution for xrand to generate a disproportionate number of samples inside
the set S is effective when the system is easily steered toward S (i.e. the system
is output controllable with respect to s(x)). To estimate this we update the
amount of biasing for every Ns iterations of the RRT algorithm, where Ns is
user defined number. If in a given iteration ρ(xnear, xrand) > ρ(xnew, xrand),
where ρ is a metric function, we call such an iteration successful because the tree
has grown toward xrand. We count the number of successful iterations ns, out
of the nβ iterations where random states were generated inside the set defined
by s(x) ≤ 0 and compute

β =
ns

nβ
. (12)

Values of β close to unity indicate biasing sample generation inside S has been
beneficial.

Our proposed probability density function B(x;µ, β), to be used in Line 1

16



−10 −5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

x
B

(x
; µ

, β
)

Figure 10: The distribution B(x;µ, β) with µ = 0 and various values of β.

of Algorithm 2, resembles a Gaussian over some compact set, a ≤ x ≤ b

B(x;µ, β) =

{

N(x;µ, σ(β)) + Ct/(b− a), a ≤ x ≤ b
0 otherwise (13)

where N(x;µ, σ(β)) is the Gaussian distribution with mean µ and standard
deviation σ(β). The last term, Ct/(b − a), is added to ensure that the area
under the curve is equal to one. Ct represents the area of the truncated portions
above x = b and below x = a

Ct =

∫ a

−∞

N(x;µ, σ)dx+

∫ ∞

b
N(x;µ, σ)dx.

Obviously µ should be selected so that s(µ) ≤ 0. The standard deviation
of N(x;µ, σ(β)) effectively determines the bias and should be computed using
β ∈ [0, 1]

σ(β) = (1− β)(σmax − σmin) + σmin, (14)

where σmax and σmin are user-defined values of the maximum and minimum
standard deviations.

Figure 10 illustrates the shape of B(x;µ, β) with different values of β. Dis-
tribution (13) can be easily implemented using any random normal generator
and rejecting points generated outside the compact domain.

Example 4.4 We consider a hovercraft in constant altitude flight with 6 states,
x = (x1, x2, θ, v1, v2, ω). The dynamic equations are

mv̇1 = (f1 + f2) cos(θ) + fx1air(x, vair(x))
mv̇2 = (f1 + f2) sin(θ) + fx2air(x, vair(x))
Jω̇ = (f2 − f1)l + τair(x, vair(x))

The control inputs are u = [f1 f2]
T (forward actuating forces) and U = [−10, 10]×

[−10, 10]. Forces due to wind disturbances in the x1, x2 and θ directions are
fx1air, fx2air, and τair whose exact expressions are omitted for brevity but are
quadratic in the difference between the craft’s velocity and the wind velocity vair
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Figure 11: RRTs of the hovercraft problem with uniform sampling (left) and
with adaptive bias (right).
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Figure 12: The evolution of the biasing factor β for the hovercraft problem.

and vary with the orientation of the craft. Note that the state is partitioned into
two regions (indoor and outdoor) which define the wind velocity differently:

vair =

{

[−αvx2 βvx1]
T ,

√

(x1)2 + (x2)2 ≤ 100

[0 0]T ,
√

(x1)2 + (x2)2 > 100
.

We would like to determine if a hovercraft under these wind conditions can
reach some goal zone, S = {(x1, x2) ∈ [190, 200] × [0, 10]}. Note that when
outdoors, the wind forces are significantly greater in magnitude than the control
inputs, making the system uncontrollable. The initial state is x0 = [0 0 0 0 0 0]T .

The distribution (13) was used to solve the problem 10 times on a 1GHz PC.
Figure 11 shows the solutions of the problem with the uniform sampling dis-
tribution and adaptive bias. Figure 12 shows how β changes as the algorithm
evolves. The adaptive algorithm is able to exploit the situations in which bias-
ing is effective. As shown in Table 2, the adaptive biasing algorithm improves
the efficiency of RRT method compared to other fixed bias strategies rather
dramatically.
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Sampling Method No. of Nodes Computation Time (sec)
Uniform 3556 1753.5

Med. Bias 1017 490.2
Heavy Bias 912 408.3

Adaptive Bias 678 342.5

Table 2: Hovercraft Example: A comparison of the sampling strategy introduced
here (Adaptive Bias) to fixed-bias sampling strategies, averaged over 10 trials
on a 1GHz PC.

5 Unified Algorithm

In this section we introduce a unified algorithm incorporating the three enhance-
ments presented earlier and validate the new algorithm on a large scale example
problem.

5.1 Unified algorithm

Algorithms 3 and 4 present the unification of the enhancements presented in
the previous section. Note that, since most robotic problems are controllable,
Algorithm 1 can terminate when a solution is found. In our case, it is a dis-
tinct possibility that no solution exists so we impose a secondary termination
criterion. We can use the dispersion-based explored fraction defined in Sec-
tion 3 to monitor tree growth. The change in C̄X

K over the trailing N iterations
∆C̄X

K , measures the growth of the tree. If ∆C̄X
K drops below some user-defined

∆C̄X
K min we terminate the search. Before running simulations, the user needs

to set the user-defined values such as Ū ,∆C̄X
K min, N, δx,Ns, σmin and σmax and

initialize β = 1.

Algorithm 3 Generate enhanced-RRT: T
Initialize RRT: T .addVertex(x0 ← xinit, n0 ← 0)
Global: β = 1
while (6 ∃x ∈ T such that s(x) ≤ 0) AND ∆C̄X

K ≥ ∆C̄X
K min do

enhanced-Extend(T )
end while

5.2 A Multiagent Problem

We consider a problem where multiple autonomous vehicles must guard against
an intruder entering a designated area. This scenario has applications in games
such as “capture the flag”. It has applications in homeland security where
autonomous vehicles (boats, airplanes, ground robots) can be deployed to detect
unidentified vehicles entering a cordoned-off area or an exclusion zone.

In this example, we examine a circular area, SE guarded by 4 robots. Each
robot has sensor foot prints which are assumed to be circular with radius Rd
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Algorithm 4 enhanced-Extend(T )

σ = (1− β)(σmax − σmin) + σmin
xrand ∈ X ← B(x;µ, β) (see Equation (13))
xnear ← arg minxj∈T [H(xj , xrand; t2go)] (see Equation (9),(10))
unew = arg minu∈Ū [t2go(xnear, xrand)]

xnew = xnear +
∫ ∆t f(x, unew(t))dt

if xnew = xj ∈ T then
nj + +
while xnew = xj ∈ T do
Ū ← Ū − unew

unew = arg minu∈Ū [t2go(xnear, xrand)]

xnew = xnear +
∫ ∆t f(x, unew(t))dt

end while
end if
T .addVertex(xnew, nnew = 0)
T .addEdge(unew, xnear → xnew)
reset Ū
if Ns iterations then
β = ns

nβ

end if

for detection and Rc for capture, as shown in Figure 13.We assume each of the
intruder and guard robots has 5 states, xi = (xi

1, xi
2, θi, vi, ωi) and 2 control

inputs, ui = (ui
1, ui

2) where x1 and u1 indicate states and input of the intruder.
The dynamics with nonholonomic constraints are given by:

ẋi
1 = vicos(θi), ẋi

2 = visin(θi), θ̇i = ωi

v̇i = ui
1, ω̇i = ui

2.
(15)

We can define the free spaceX = X1×X2×· · ·×X5\
⋃5

i=2 B(xi(t), Rc) ⊂ R25

where

Xi = {(xi
1, x

i
2, θ

i, vi, ωi) ∈ R5|(xi
1)

2 + (xi
2)

2 ≤ R2
I}

B(xi(t), Rc) = {(xi
1, x

i
2)|(x

1
1 − x

i
1)

2 + (x1
2 − x

i
2)

2 ≤ R2
c}.

Then the specification set S is defined by

S = {∈ X|(x1
1)

2 + (x1
2)

2 < R2
s}

where Rs is the radius of the circle CE .
The guarding scheme is shown in Figure 14. Initially, the guard robots

distribute evenly along the perimeter of the exclusion zone. If the intruder
enters the detection range of a guard robot, the robot pursues the intruder and
other robots redistribute evenly along the circle CE . If the intruder escapes
the detection range of the pursuing robot, the robot returns to the perimeter
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and all robots redistribute evenly. To evenly distribute guard robots along the
perimeter, we use the algorithm proposed in [11]. Each guard robot is subject
to the force

τ j = −k∇ψ2(qj)− cq̇j +
∑

k∈Nj

Fr(qj , qk) (16)

where qj = (xj
1, x

j
2) ∈ R2 is the position of robot j, ψ : R2 → R is an implicit

function description of the perimeter of the exclusion zone that must be guarded
and Nj is the set of robots neighboring robot j. Fr is a Coulomb-like repulsive
force that ensures that the robots do not cluster together, while c is a constant
which provides a viscous damping term. The force is applied to a point that is
at a finite distance away from a robot to address nonholonomic constraints. A
detailed description of the control law including a proof of convergence to dif-
ferent shapes is provided in [11]. However, the analysis in that paper cannot be
used to predict the transients as each guard robot moves toward the perimeter.

The question we wish to answer is as follows. If an intruder or an adversary
is allowed to start anywhere in a specified region SI , and the guard robots,
employing the control law described above, are initially evenly distributed on
the circle CE , can the intruder enter the exclusion zone (SE) uncaptured? The
answer to our question can only be found by searching for an initial condition
and a control input function for the intruder which drives it into the exclusion
zone without crossing any of the capture ranges. Note that the reachable set of
states in X is a small subset of the entire state due to the fact that the system
is uncontrollable and U is bounded. Finally, note that the intruder can start
anywhere in the set SI . In other words, the initial condition for the intruder
must be chosen from this finite set, each condition leading to a RRT.

We apply the RRFT algorithm [21] with enhancements suggested in Sec-
tion 5.1 to the problem. The control inputs are u = (u1

1, u1
2) ∈ U = [−5, 5] ×

[−π/15, π/15] with RI = 300m, Rs = 100m, Rd = 110m and Rc = 40m.
Figure 15 shows the forest of trees where a solution trajectory is found for the
algorithm with the “history-based selection of proximal node”, visualizing the
position of the intruder. Eight initial conditions are generated and a forest
starts to grow until a solution is found. Table 3 shows the statistics obtained
for this example with all the enhancements. The second column shows the av-
erage number of nodes used to find a solution trajectory for the intruder robot
(one such trajectory is shown in Figure 15). The third column shows the com-
putation time with different options. The first main point to note from these
two columns is that the standard algorithm takes eight times as long requiring
eight times the number of nodes to find the same solution. The second main
point in this example is that adaptive biasing allows the most improvement in
efficiency among the three enhancements. This is because, while the probability
distribution used does increase P ext, the primary motivation in selecting it was
to grow the tree toward the goal, as fast as possible. Figure 16 shows the change
of β as the algorithm with “adaptively biased sample generation” evolves.

Figure 17 shows the comparison of the dispersion-based explored fraction
of the original algorithm compared with the history-based and dynamics-based
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Intruder
Guard robot 

Exclusion Zone (SE)

Initial region for intruder (SI)

Initial positions for guard robots
Initially, evenly distributed

detection range (Rd)

capture range (Rc)

RI

CE

Figure 13: Initial conditions for guard robots and intruder. Each robot has a
detection range Rd within which the intruder is detected, and capture range Rc
within which the intruder is captured.

Intruder detected
Pursue the intruder

Redistribute

Figure 14: Guarding scheme of the robots. Distribute until the intruder is
detected (left); and pursue if the intruder is within the detection range of a
guard robot (right).

selection of proximal node. As expected the dynamics-based and history-based
algorithms provide better tree growth.

Enhancement No. of Computation
Method Nodes Time (sec)

No Enhancement 25251 14978.8
Dynamics-based 14944 7549.4
History-based 12896 6387.7

Adaptively biased 4924 3396.9
Three Enhancements 3352 1976.3

Table 3: Guard-intruder Example: A comparison of the algorithm, with and
without enhancements averaged over 10 trials on a 3GHz PC.

6 Conclusion

The RRT algorithm has been successful in solving complex motion planning
problems. We explore the application of this algorithm and its variants to the
problem of testing complex reactive control systems and validating the effec-
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Figure 15: The forest of RRTs with 8 different initial conditions. A solution
trajectory of the intruder is highlighted on the bottom.

tiveness of multi-agent controllers. Testing and validation involve searching for
conditions that lead to system failure by exploring all adversarial inputs and
disturbances for errant trajectories. Unlike motion planning problems, the sys-
tems may not be controllable with respect to disturbances or adversarial inputs
and the reachable set of states is generally a small subset of the entire state
space.

Because of the differences between testing and motion planning, we propose
three modifications to the original RRT algorithm. First, we develop a new
distance function which encodes local information about the system’s dynamics
with a first order approximation. Second, because the reachable state space is
generally a small fraction of the total state space, we modify the node selection
strategy to discourage the repeated selection of boundary nodes. Finally, we
propose a scheme for adaptively modifying the sampling probability distribu-
tion based on tree growth. We demonstrate the application of the algorithm via
three simple examples and one large scale (25 dimensions) multi-agent pursuit-
evasion example problem and provide computational statistics demonstrating
a reduction of computation time by a factor of eight. To demonstrate im-
provements in the rate at which the state space is explored with the dynamics-
based and history-based selection of proximal node algorithms, we derived a
dispersion-based measure of the explored set. Growth rates of the complex dy-
namic systems are qualitatively compared with and without enhancements of
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Figure 16: The evolution of the biasing factor β for the guard-intruder example.
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Figure 17: A comparison of the dispersion-based explored fraction.

the algorithm and the result shows distinct improvements.
Note that the enhancements introduced here are targeted at systems with

complex (non-linear, non-holonomic, or non-smooth) dynamics which cause
large portions of the state space to be unreachable. In contrast, motion plan-
ning problems with simple dynamics (holonomic) but geometrically complex
spaces (e.g. narrow passages), pose a different set of challenges. The motiva-
tion for the History-based and Dynamics-based selection techniques here is an
underlying assumption that the connection attempt (i.e. generating xnew) is
(1) computationally expensive and (2) unlikely to actually reach xrand due to
small ∆t. Therefore metrics are used as less than ideal proxies to guide the
selection of which node to expend. In contrast, for systems with simple dynam-
ics, connecting a random node to the existing search graph can be trivial and
can be possibly be tested exhaustively. A more daunting issue for geometrically
complex problems has to do with generating a sufficient number of samples in
“critical” regions of the configuration space like narrow passages. To that end
the concept of biasing the distribution adaptively can be useful.

Based on our experience we find that the relative impact each enhancement
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has on algorithmic efficiency is problem dependent. For example, the history-
based selection method yields significant improvements when the volume of the
reachable set is a very small fraction of state space (Example 4.3), and the goal
set lies in the interior of the reachable set. Fortunately it requires little com-
putational overhead so, even when little is known about the system, there is
little drawback to using it. In general, biasing the sample distribution yields
dramatic improvements in regions of the state space where the system is small
time locally controllable or the configuration space is simply connected. For
systems in which this is not true, the adaptive approach takes slightly longer to
find a solution compared with a uniform distribution. However, by virtue of be-
ing adaptive, after a brief transient the distribution converges to near uniform.
Again, little overhead is required to implement this enhancement so there is
little risk in including it. The dynamics-based selection method is very effective
for systems that are not small time locally controllable; particularly those with
unilateral constraints on velocities (i.e. a aircraft that moves forward only).
However, the computational overhead to compute Equation (9) can vary con-
siderably. If the input range is discretized into Nu values and an exhaustive
search is used to compute the best value of u at all K nodes in the tree, it needs
K ·Nu evaluation of f(x, u) and inner products at each iteration. If the tree has
many nodes, this overhead will outweigh the benefits of the enhancement. An
efficient method of selecting u to connect to a state is required. In such a case,
t2go can be used as a secondary criterion to select xnear as mentioned in Sec-
tion 4.1. It has been our experience that the dynamics-based selection method
provides considerable computational improvement even with the overhead for
many examples.

Future work is being directed to a systematic approach to selecting the user-
defined parameters of the algorithms proposed in this paper. For example, as
thresholds for stopping the growth of a tree, we use significantly small constant.
However, we believe there exists a mathematically meaningful way to set the
threshold on an acceptable growth rate. Such thresholds will be of importance
since they are directly related to the termination criteria for the algorithm.
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