1. ES306H Advanced Control Systems

2. 3 credit hours, 2 recitation hours and 2 laboratory hours

3. Course coordinator: Professor Kiriakos Kiriakidis

4. Textbook: Control Systems Engineering (Eleventh Edition), Nice, 2015

5. Specific course information

a. This course builds upon the foundation established in ES305H and covers the analysis and design of state-space control systems. Specifically, state feedback control and state estimation methods are presented and supported by a series of laboratory projects on the design and implementation of state-space control systems for physical systems. This honors course focuses on deeper analysis of the linear and advanced control toolsets and includes an open-ended control design project. [spring]

- b. Prerequisite: ES301, ES305H
- c. Required course

6. Specific goals for the course

- a. At the conclusion of the course, students will be able to:
 - Apply classical control design and understand the limits of its performance
 - Understand state equations and their ability to describe the internal dynamics of a system
 - Understand control system performance specifications in terms of matrix characteristic roots
 - Apply linear algebra to solve problems arising in control design
 - Apply series expansion to approximate nonlinear terms
 - Apply differential equation methods to solve for the state vector in time
 - Analyze the effect of multiple feedback loops on the characteristic polynomial (state feedback)
 - Evaluate the performance of state feedback design against implementation and operational costs
 - Understand the need for a state estimator with feedback (unknown inputs and ICs)
 - Synthesize a state estimator given a plant model and output measurement

- Understand control of a physical plant via a communication network (Cyber-Physical System)
- Analyze by simulation the effect of communication delays on system performance
- b. This course addresses the following student outcomes:
 - (a) an ability to apply knowledge of mathematics, science, and engineering
 - (b) an ability to design and conduct experiments, as well as to analyze and interpret data
 - (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (e) lack of controllability or observability in engineered systems
 - (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- 7. Topics covered:
 - Limits of Classical Design
 - Applied Matrix Algebra: Caley-Hamilton Theorem; Matrix Exponential
 - Solution of State Equations
 - Controllability and Diagonal Form
 - Pole Placement
 - State Estimation
 - Networked Control Systems: Time Delays and Cyber Attacks