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RESEARCH MOTIVATION AND EXPERTISE

 SOME OF THE CURRENT OBJECTIVES OF LASERS  PROPAGATION AND SCATTERING UNDERWATER IS LARGE DATA VOLUME LINKS IN THE LINE-

OF-SIGHT AND HIGH RESOLUTION CLOSE DISTANCE IMAGERY

 NAVY LASER MINE DETECTION NOW OPERATIONAL Published 28 march 2017 

The Airborne laser mine detection system uses pulsed laser light and streak tube receivers housed in an external equipment pod to image the entire near-surface volume potentially containing mines. It 

emits pulsed blue-green laser wavelength of about 510nm, which allows it to operate in a depth of up to 200 meters. As stated in publications from the geoscience and remote sensing symposium, the system subtracts the time 

between the reflections of the laser beams that bounce off of the water’s surface and the reflections of laser beams that penetrate the surface in order to calculate depth and orientation.

 THE CHALLENGE OF LASER LIGHT PROPAGATION AND SCATTERING UNDERWATER IS DOMINATED BY THE ATTENUATION OF THE LIGHT 

INTENSITY AND THE COMPLEXITY OF THE MARITIME ENVIRONMENT. 

 WE BRING IN THE EXPERTISE IN CREATING LASER LIGHT WITH VARIABLE DEGREE OF COHERENCE AND POLARIZATION, AND MEASURING THE 

LIGHT INTENSITY FLUCTUATIONS PERFORMANCE IN THE FIELD 

 THESE LASER BEAMS EXPERIENCE LOWER LEVELS OF SCINITALTION IN ATMOSPHERIC OPTICAL TURBULENCE 

 THEORETICAL STUDIES SUGGEST IMPROVED PERFORMANCE IN OTHER COMPLEX MEDIA

 UNDERWATER TEST BED UNDER CONSTRUCTION

 LARGE 6 FT WATER TANK ACQUIRED

 TEMPERATURE ACTUATORS AND SENSORS INITIAL CALIBRATION PERFORMED

 WATER FLOW ACTUATION AND SENSING TESTED, 

 STUDENT LED EFFORT WITH A GOAL OF PROVIDING A CONTROLLED TEMPERATURE AND FLOW IN MARITIME ENVIRONMENT FOR UNDERWATER LASER TESTING



EXPERIMENTS

 GENERATE SPATIALLY PARTIALLY COHERENT FLAT TOP BEAMS WITH VARYING DEGREES OF COHERENCE, EXPRESSED AS SPECKLE SIZE

 CONSTRUCT SINGLE POLARIZATION BEAMS AND COMBINED BEAMS, BOTH VERTICALLY AND HORIZONTALLY POLARIZED BEAMS PROPAGATED 

SIMULTANEOUSLY.

 ISOLATE BEAM MODE TO BE EXPERIMENTALLY USEFUL

 PROPAGATE THE BEAM FOR AT LEST 20 FT IN ORDER TO DEVELOP PATTERN FROM SPATIALLY DISTRIBUTED BEAMLETS

 PROPAGATE THE BEAM THRU A WATER TANK WITH SPECIFIES SALINITY

 ENGAGE A MECHANICAL AGITATOR TO MOVE SCATTERERS IN THE WATER (VARIOUS RANDOM DUST PARTICLES), ACHIEVE STATIONARY SCENARIO

 PROVIDE STILL CONDITIONS IN WATER FOR COMPARISON CASE

 SET UP A CAMERA IN THE BEAM’S DIRECT PATH TO RECORD THE  PROPERTIES OF THE LASER LIGHT INTENSITY FLUCTUATIONS

 SET UP A CAMERA TO OBSERVE FORWARD PATH SCATTERING

 COLLECT MEASUREMENTS FOR ARRAY OF CONDITIONS

 PROCESS THE DATA FINDING MEAN INTENSITY, SCINTILLATION INDEX AND PROBABILITY DENSITY FUNCTION

 REPEAT FOR THE VORTEX BEAMS



EXPERIMENTAL SET UP

SLM

Camera capturing beam propagation

Laser source

Half plate to generate 

horizontally polarized light

Beam splitters

Horizontally polarized light Mirror

Iris to block unused laser light

Vertically polarized light Mirror

Confirming 

vertical 

polarization

 Laser light, vertically polarized, from the 

source is expanded to best utilize SLM

 SLM generates screens to create specific 

light pattern (MGSM)

 After the screen is generated vertical 

polarization is confirmed optically

 Laser beam is split 

• One lag is reflected from the mirror (this is 

vertically polarized component)

• Along the other lag the polarization of the 

light is changed using half plate

• This horizontally polarized light is reflected 

from a mirror

 Both vertically and horizontally polarized 

light is combined

 Iris is used to select appropriate beam mode 

for propagation

 Beam is propagated for 30 feet before 

going through a water tank 3 feet long

 Laser light propagation and scattering

 is captured using 2 cameras

Iris



MULTI GAUSSIAN SCHELL MODEL BEAM GENERATION

Simulation from SLM screen, cropped to reflect use of iris

Hot spot

Generated beams using SLM, 

note the hot spot and 

shifted modes due to the use of a grid

Experimentally 

generated 

MGSM Beam

MGSM 

speckle radius 0.38 mm

MGSM 

speckle radius 0.77 mm



MEAN INTENSITY
FOR THE VARIOUS SPECKLE SIZES WHEN THE FLAT TOP LASER BEAM IS 

PROPAGATED TROUGH A WATER TANK IN STILL CONDITIONS 
AND WITH THE MOVING SCATTERERS
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SCINTILLATION INDEX 
FOR THE VARIOUS SPECKLE SIZES WHEN THE FLAT TOP LASER BEAM IS 

PROPAGATED TROUGH A WATER TANK IN STILL CONDITIONS 
AND WITH THE MOVING SCATTERERS



SUMMER 
PLANS

SCHEDULING

22 WORKING DAYS 

 ONR FUNDING FROM 14 JUNE TO 14 JULY

 COLLABORATION WITH ABBIE WATNIK FROM NRL ON 

LASERS UNDERWATER, INITIAL VISIT JUNE 13

 OSA CONFERENCE 25 JUNE 1 JULY 

 FROM 14 TO 23 JUNE PREPARING THE MATERIAL FOR 

THE CONFERENCE

 FROM  2  TO 14 JULY WRITING A JOURNAL PAPER  

OBJECTIVE

LASER UNDERWATER EXPERIMENTS:

MITIGATING THE EFFECTS OF MARITIME 
ENVIRONMENT ON LASER BEAMS

 RUN THE EXPERIEMNTS TO ESTABLISH PROPAGATION AND SCATTERING 

DEPENDANCE OF

• BEAM INTENSITY,

• SCINTILLATION  AND 

• PROBABILITY DENSITY FUNCTION 

 ON LASER BEAMS WITH 

• VARIABLE COHERENCE LEVEL AND

• POLARIZATION

 GOALS 

• VERIFY THE BENEFIT OF SIMULTANEOUS PROPAGATION OF DIFFERENTLY 

POLARIZED LASER BEAMS IN COMPLEX ENVIRONMENT

• ESTABLISH COHERENCE LEVEL ‘SWEET SPOT’ IN VARIOUS MARITIME 

CONDITIONS
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