
MGSM beam model
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Discrete MGSM beam model (1)
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Eqs. (3) and (4) suggest that a MGSM beam can be treated as incoherent superposition 

of beamlet 𝐴 𝝆, 𝒇 , a Gaussian beam whose amplitude is a function of its direction 

characterized by 𝒇.

Note that 
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On substituting Eq. 2 into Eq. 1 and exchanging summation over 𝑚 and integral over 𝒇

where

(3)

(4)
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Discrete MGSM beam model (2)

≈ ෍

𝒖⊥ <1

𝐴 𝝆1, 𝒖⊥ 𝐴∗ 𝝆2, 𝒖⊥

The scintillation properties of a partially coherent beam can be characterized 

by its discrete beamlet array *

𝑊 𝝆1, 𝝆2 = න

−∞

∞

𝐴 𝝆1, 𝒇 𝐴∗ 𝝆2, 𝒇 𝑑2𝑓
𝒇 =

𝑘𝒖⊥
2𝜋

𝑘 =
2𝜋

𝜆

𝒖⊥ = 𝑢⊥𝑥, 𝑢⊥𝑦

𝒖⊥ is the projection of the unit vector 

𝒖 on the source plane.

𝒖 specifies the direction of 𝐴 𝝆1, 𝒖⊥

* Y. Gu and G. Gbur, “Scintillation of pseudo-Bessle correlated beams in atmospheric 

turbulence,” J. Opt. Soc. Am. A 27, 2621-2629 (2010).

Source plane

Discrete MGSM beam

The amplitudes of its constituent beamlets

form a flat-top function in the 𝒖⊥ plane.

Because evanescent modes do not propagate, only 𝒖⊥ < 1 are included in the discrete MGSM 
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The scintillation index of a discrete MGSM beam:
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Scintillation of discrete MGSM beams: analytical model 

in weak turbulence
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Scintillation of discrete MGSM beams: analytical model 

in weak turbulence
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Scintillation of discrete MGSM beams: analytical model 

in weak turbulence
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 n is the turbulence spectrum function.
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Please see Gu and Gbur JOSA A 2010 for the detailed derivation of equations in page 4-6.



Scintillation of discrete MGSM beams: how many 

beamlets are sufficient 

.
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The scintillation properties of a Bessel correlated 

beam can be characterized by its discrete beamlet

array with as less as 4 beamlets*

* Fig. 3 in Y. Gu and G. Gbur, “Scintillation of pseudo-Bessle

correlated beams in atmospheric turbulence,” J. Opt. Soc. Am. A 27, 

2621-2629 (2010).

how many beamlets are sufficient for a MGSM beam?

• Determine the minimum sampling 

radius 𝑢⊥min in the 𝒖⊥ plane

• Determine the maximum sampling 

separation ∆𝑢⊥max in the 𝒖⊥ plane

• Obtain the number of beamlets

bounded within the circle in the 𝒖⊥
plane

𝑢⊥𝑚𝑖𝑛
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Scintillation of discrete MGSM beams: general steps 

.
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• Usually, we should start with a large sampling radius and a small 

sampling separation so that the discrete MGSM beam is similar to the 

corresponding continus MGSM beam.

• Sampled 𝒖⊥ = 𝑢⊥𝑥, 𝑢⊥𝑦 distribute in the 2D 𝒖⊥ plane, resulting a 

large number of beamlets, then heavy computation load.

• Since both the turbulence and the MGSM beam are isotropic, we only 

sample 𝑢⊥𝑥 but let 𝑢⊥𝑦 = 0. So the direction vectors of the beamlets

are in 𝑥𝑜𝑧 plane. This the is so called 1D discrete MGSM beam.

• We then determine 𝑢⊥𝑚𝑖𝑛 and ∆𝑢⊥𝑚𝑎𝑥 of the 1D discrete MGSM 

beam.



Scintillation of discrete MGSM beams: parameters

the mechanical iris to truncate the beam was around 

0.5 cm in diameter

Then the width 𝜎 of the soft-Gaussian exp −
𝜌2

𝜎2
is 

0.5/ 2 2 After O. Korotkova, “Changes in the 

intensity fluctuations of a class of random 

electromagnetic beams on propagation,” J. Opt. A: 

Pure Appl. Opt., 8, 30-37 (2006) (in particular the lines 

after Eq. 29 on page 34.)
.

9

𝜆 = 0.633 μm

𝐿 = 323 m

𝐶𝑛
2 = 10−14 m−2/3 the inner scale is 1 mm and the outer scale is 10 m

𝛿 = 0.27 mm (according to Eq. 9 in the proceeding for SPIE Optics & Photonics 2014)

𝜎 = 1.8 mm



Scintillation of discrete MGSM beams: 1D
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Δ𝑢⊥𝑥 = 10−6, so 501 beamlets are 

included when the sampling radius 

is 2.5 × 10−6. When the sampling 

radius is 0, it corresponds to a fully 

coherent Gaussian beam, since 

only one mode is included [𝒖⊥ =
0,0 ].   

From the left figure, it looks like that 

the on-axis scintillation index is 

almost invariant when we add more 

incoherent beamlets. In other word, 

a 1D partially coherent MSGM 

beam has s
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Explanation of Figure on page 10

.
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Note that the width of the Gaussian beamlets

on the source plane is 1.8mm. After 

propagating for 323 m, the corresponding 

width is 3.7cm, 20 times wider than the size 

on the source plane. Under this circumstance, 

the beamlets are highly correlated. 
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The blue curve in the left figure is the 

correlation coefficient between the on-axis 

intensity of the beamlet [𝒖⊥ = 0,0 ] and the 

on-axis intensity of the other beamlets. It can 

be seen 𝒖⊥ = 0,0 is highly correlated with its 

neighbors. On the other side, the on-axis 

intensity approach zero for beamlets with 

large 𝒖⊥ . Their contribution is negligible 

though they are low correlated with 𝒖⊥ =
0,0 . So the on-axis scintillation index plot 

shown ong page 10 is almost invariant when 

we include more beamlets.

The spikes in the blue curve is probably because of the errors of 

numerically evaluation of the equations on pages 4-6 (using Mathematica). 



Scintillation of discrete MGSM beams: 1D used in SPIE
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𝜆 = 1.55 μm

𝐿 = 2 km

𝜎 = 5 cm

𝛿 = 1.08 cm

𝐶𝑛
2 = 10−15 m−2/3

The beam example used in the SPIE paper has a wide width. So after propagating 

for 2km, the width is 5.38 cm. The correlation curve decreases relatively quick. Even 

negative correlation appears in the right figure. In addition, the correlation curve has 

a comparable width with the normalized on-axis intensity curve



Scintillation of discrete MGSM beams: 1D
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From the left figure, it looks like that 

the on-axis scintillation index is 

almost invariant when we change 

M.
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Explanation of Figure on page 13
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From Eq. 4 (beamlet on the source 

plane), the on-axis intensities of these 

beamlets on the detector plane are 

determined by two parts (left: a flat-top 

function and right: a Gaussian function).

The normalized left part (different M) 

and the right part for the parameters on 

page 9 are shown in the left figure.

For such a low coherent MGSM beam, 

the on-axis intensities of the bealets are 

determined by the right part, 

independent of the left part

𝐴 𝝆, 𝒇 =
1

𝐶0
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−1 𝑚−12𝜋𝛿2exp −𝜋22𝑚𝛿2𝑓2 exp −
𝜌2

𝜎2
exp 𝑗2𝜋𝒇 ∙ 𝝆 (4)
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Scintillation of discrete MGSM beams: 1D used in SPIE
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𝜆 = 1.55 μm

𝐿 = 2 km

𝜎 = 5 cm

𝛿 = 3.54 cm

𝐶𝑛
2

= 10−15 m−2/3

The beam example used in the SPIE paper has a large coherence length. So after 

propagating for 2km, the normalized left part (different M) has comparable width with 

the normalized right part. So the on-axis scintillation index of 1D MGSM beam varies 

as a function of M.
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