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Laser Background

Project Background

Random processes occur throughout 
nature.  The first step to understanding the 
statistics behind the event is to compute an 
accurate probability density function for 
the data collected from the event.  
However, for stochastic processes, there is 
no way to compute the exact probability 
density function.  Therefore, we will use 
different methods to compute probability 
density functions from given stochastic 
data.  The stochastic data that we will 
utilize are laser data that have already been 
collected. We will use the laser data to 
evaluate each method for computing the 
approximate probability density function.

Laser data exhibits stochastic behavior 
when propagated through the maritime 
domain.  We would like to compute an 
approximate probability density function to 
help us better understand the impact the 
atmosphere has on the laser in the 
maritime domain.  We will use three 
methods: (1) Naïve/Kernel Method, (2) 
Barakat Method through lower-order 
moments, and (3) Gaussian Mixture 
Techniques. 

Laser Data Collection

A HeNe laser was propagated through a turbulent 
atmosphere.  The beam was of 632 nm wavelength.  
The laser was placed in a stationary location and 
projected a beam 375 meters onto a stationary 
sensor that recorded intensities of the laser light at 
a frequency of approximately 10kHz.  Recorded for 
approximately three minutes, this resulted in over 1 
million data points in a time series.  We have over 
one hundred data sets on file, taken under different 
atmospheric conditions, that are usable in MatLab. 
We investigate the properties of the laser light 
through these data sets.

Kernel Method

The Kernel Method is described by Silverman.  It is a mixture technique in which a 
known probability density function, that is dependent upon a single data point, is 
computed for each data point.  The collection of probability density functions is then 
summed together and normalized to create a probability density function with 
appropriate area equal to 1.  For the Kernel Method with the Gaussian curve as a 
mixture:
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Gaussian Mixture Method

Barakat Method

Comparison Techniques

Results

Barakat argues that the first five moments of h are sufficient to approximate the PDF 
of h reasonably well. The method involves the use of Generalized Laguerre
Polynomials, which are described as LN here.  We intend to evaluate this assumption 
for the laser data that exhibits significant noise once propagated in the maritime 
domain.  
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The Gaussian Mixture Method (GMM) is a clustering technique that is remarkably 
similar to the Kernel Method.  With the Kernel Method, there are N Gaussian Curves 
for N data points.  GMM lets the user input the number of clusters to increase 
computational efficiency.  The method assumes that each cluster is uniformly spaced 
on the domain of the data points.  The points are readjusted iteratively until they 
converge.   
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K-S Test: Compares CDF of proposed 

PDF to Empirical CDF by calculating the 
maximum difference.

RMS Test: Compares CDF of 

proposed PDF to Empirical CDF by 
summing the square of the differences.

Hellinger Distance: Compares PDF 

g(x) to PDF f(x) directly. Yields value of 
1 if two PDFs are identical, 0 if two 
PDFs are disjoint.
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In conclusion, we can see that while the Barakat Method is capable 
of modeling the synthetic data remarkably well, it cannot account for 
the noise in the real data. In addition, the beta values from the 
Barakat Method that result from real data sets are often too large to 
support numerical approximations computationally. The Kernel 
Method is capable of representing the empirical data well, but
does not yield as much information about the underlying distribution 
from which the data is pulled (as discovered from the synthetic data 
simulation). In addition, the Kernel Method is computationally very 
strenuous. Ultimately, the Gaussian Mixture Method represented the 
data set well, and was not as computationally strenuous. However, 
the resulting pdf is not a unique solution, and also requires
the user to input the number of clusters beforehand.


