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Reduction in the scintillation index of Multi-Gaussian Schell-model beams propagating in turbulent air is 
demonstrated as a function of two source parameters:  the r.m.s. coherence width and the summation index.  The 
beams were generated with the help of a nematic phase-only, reflective spatial light modulator at a cycling rate of 
333 frames per second and recorded after propagating through a weakly turbulent air channel over a distance of 
70 meters.  Experimental results are in good agreement with theory. 
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Turbulence; (290.5930) Scintillation  
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1. INTRODUCTION For mitigation of turbulent atmosphere, in terms of reduction of intensity fluctuations (scintillations) in optical links, various approaches have been employed: aperture averaging [1], receiver arrays [2], as well as spectral and polarization diversification [3, 4].  The fine control of spatial partial coherence of the source has also been successfully demonstrated both theoretically and experimentally to lead to suppression of scintillations [5-13].  So far, the majority of work has been dedicated to the coherence properties of the classic Gaussian Schell Model (GSM) sources, characterized by one coherence-related parameter, r.m.s. (typical) coherence width.  It has been shown that the GSM sources can be optimized with respect to this parameter, which takes a certain value for a given atmospheric channel in order to minimize the scintillation index [9].  For values smaller than the optimal, the beam diverges too fast, and for values larger than the optimal the partial coherence is under-utilized.           Recently, a variety of random sources with non-Gaussian shapes of the degree of coherence have been introduced [14-20].  The beams radiated by such sources can form practically arbitrary average intensity distributions in the far zone on propagation in free space.  On passing through the turbulent air the beams with these special source coherence characteristics can form the prescribed average intensity patterns at certain distances from the source plane, which gradually convert to Gaussian-like intensity patterns with further propagation [21-25].  In particular, the Multi-Gaussian Schell-Model (MGSM) 

sources have been shown to produce flat circular intensity profiles at the beam center with Gaussian decay at the beam edges [15, 16].  This feature can be employed in any application where power-optimized, uniform illumination of circular distant objects is required.  The MGSM beams are mathematically described as a two-parametric model: one parameter is the r.m.s. coherence width (just like for the GSM beams) and the other is the number of terms in summation relating to beam size and flatness.  A recent theoretical investigation of the scintillation index for the MGSM beams on propagation in turbulent air has shown that with an increase of the flatness parameter (and with a fixed coherence width parameter) the scintillation index must monotonically decrease [26].  Such a result implies that not only the width of the source coherence function, but also its spatial profile can influence the intensity fluctuations.  In this paper we provide the experimental justification for this theoretical prediction (see also [27] where our preliminary results have been reported).           The random beams with spatial correlation functions may be produced with the help of holograms [28-30] or spatial light modulators (SLM) [31-33].  In our experimental setup we employ a commercial phase-only, nematic, reflective SLM with high spatial resolution and high temporal turnover rate.  In creating the phase screens we have followed the procedure discussed in details in Refs [31 – 33, 35, 36].  The turbulent air channel that the beam propagated through had a range of 70 meters and a Cn2 of approximately 10-14m-2/3.           Partially coherent beams can only be a solution to the "last mile" problem, i.e. they are only applicable for relatively short links with weak turbulence. For larger distances with stronger turbulence the 
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