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A method for probability density function (PDF) estimation using Bayesian mixtures of weighted gamma distri-
butions, called the Dirichlet process gammamixturemodel (DP-GaMM), is presented and applied to the analysis of
a laser beam in turbulence. The problem is cast in a Bayesian setting, with the mixture model itself treated as
random process. A stick-breaking interpretation of the Dirichlet process is employed as the prior distribution over
the random mixture model. The number and underlying parameters of the gamma distribution mixture compo-
nents as well as the associatedmixture weights are learned directly from the data duringmodel inference. A hybrid
Metropolis–Hastings and Gibbs sampling parameter inference algorithm is developed and presented in its entirety.
Results on several sets of controlled data are shown, and comparisons of PDF estimation fidelity are conducted
with favorable results. © 2014 Optical Society of America
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1. INTRODUCTION
The estimation of probability density functions (PDFs) to
characterize light intensity in a turbulent atmosphere is a
long-standing problem in optics [1–7]. Understanding the
probability distribution of the light intensity is important in
many areas, including optical communications, lidar systems,
and directed energy weaponry. This paper presents a method
of density estimation using hierarchical nonparametric
Bayesian methods, specifically Dirichlet-process-distributed
Bayesian mixtures. Nonparametric Bayesian models are ones
that adapt their complexity to the data within a model class
without relying on the modeler to define model complexity.
This allows such models to be less prone to over- and
under-fitting. For completeness, this paper presents our
model in full detail and assumes a familiarity with statistical
methods on the part of the reader. For a thorough review on
Bayesian modeling and methods, see [8].

Traditionally, PDF estimates of laser light intensity in tur-
bulent atmosphere are based on stochastic physics-driven
models, heuristic concepts, or fitting via lower order moments
of the data [9]. Several well-known and widely used examples
of PDF estimation algorithms for laser light intensity include
the gamma distribution [10], the gamma-gamma model [11],
and the log–normal distribution [7]. Significant ongoing re-
search is devoted to the merits of the various approaches
and is summarized well in a recent survey paper [9].
Physics-driven models and heuristic approaches are paramet-
ric in that they attempt to fit a distribution of known form to
the observed scattered light, with goodness-of-fit assessed by

computing the root mean square (RMS) error of the
estimated PDF to a discrete histogram.

An exception to the highly parametric approach to PDF es-
timation in optics has been a series of papers that proposed
estimating the PDF of the scattered light intensity in turbu-
lence from the first several moments of the data (usually
up to the fifth moment) [12,13]. The novelty of this approach
is its nonparametric nature. That is, it does not assume that
the PDF of the observed data must follow a basic functional
form of the PDF, but instead creates highly flexible PDFs by
modulating a gamma distribution using weighted Laguerre
polynomials. This approach has been used recently in [14].

While the gamma-Laguerre method of [13] is nonparametric
and more data-driven than previous approaches in optics, it
has several drawbacks. First, the estimated PDFs cannot be
guaranteed to be nonnegative everywhere [15,16]. Second,
the approach is highly sensitive to outliers in the higher order
moments, meaning that the number of moments considered is
usually driven by computational considerations [15]. This sen-
sitivity to outliers also causes significant oscillations of the
PDF [14,17]. Finally, the number of moments considered
has a significant effect on the resultant shape of the PDF [13].

This paper explores an alternative avenue of nonparametric
PDF estimation: mixture models. Mixture models are popular
in the statistical and machine learning fields but to the best of
the authors’ knowledge are not widely used in the optics com-
munity. PDFs generated by mixture model approaches are
constructed as linear combinations of overlapping probability
distributions on a shared sample space. In [18], the authors
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showed that mixture models are generalizations of the well-
known kernel density estimators (KDE) [19,20]. KDEs place
a smooth kernel with normalized area at each observation
with the resultant PDF generated by summing the kernels.
Mixture models take a similar approach to kernel estimators
but allow subpopulations of the data to cluster into separate
overlapping distributions called mixture components. These
mixture components are then appropriately weighted and
summed such that the resultant PDF integrates to 1.

By construction, kernel and mixture models yield proper
PDFs. Moreover, such methods do not rely on the estimation
or computation of lower order moments from the data. In
particular, mixture models are an attractive solution to den-
sity estimation due to the small set of parameters needed
to characterize a PDF. However, a drawback of the classical
mixture model is the need to choose the number of mixture
components. This choice can significantly affect the result-
ing PDF.

To address the issue of choosing the number of mixture
components, [18] proposed Bayesian mixtures for density es-
timation. This approach casts the PDF estimation problem in a
Bayesian statistical context and treats the mixture model itself
(and hence the PDF) as random, endowed with a Dirichlet
process (DP) prior distribution [21]. DP is the natural choice
for a prior distribution over the mixture model due to compu-
tational convenience. DP-distributed mixture models, often
referred to as DP mixture models, have been widely used
in Bayesian machine learning not only as PDF estimators
but as powerful nonparametric clustering tools with applica-
tions in image processing [22], language and topic modeling
[23], and analysis of legislative roll call votes [24], among
many others. Previously, [21] and [18] showed that PDF
estimation via DP mixture models can be viewed as a data
clustering problem.

We adopt the framework of the DP mixture model for PDF
estimation but tailor its details for the specific application of
estimating the PDF of light intensity in turbulent atmosphere.
In doing so, we differ from previous work, specifically [21] and
[18], not only in application but also in several important tech-
nical ways. Both [21] and [18] used a parameter inference
scheme that iterates over each data point sequentially, while
we adopt the mathematically equivalent but computationally
more efficient “stick-breaking” scheme of [25] that allows us
to consider all the data simultaneously. Moreover, [18] consid-
ered Gaussian distributions as their mixture components
while our approach uses gamma distributions as mixture com-
ponents. This model design choice was for consistency with
the gamma-distribution-based methods in previous work such
as [3] and [13]. In this spirit, we also follow the data prepro-
cessing in [13]. We note, however, that our approach is general
and requires neither normalization of the data to a specific
mean or limiting the mixture components to be gamma distri-
butions. Finally, our work differs from previous work using
mixtures of gamma distributions such as [26], [27], and [28]
in that none of these approaches adopts the aforementioned
stick-breaking construction of the DP. We will henceforth re-
fer to our model as the DP gammamixture model (DP-GaMM).

We also address the issue of evaluating goodness-of-fit of
the PDF to the observed data. The primary approach to-date
within the field of optics has been to compute the root mean
square error between the estimated PDF at discrete points to a

normalized frequency plot of the observations [6,9,29]. Such a
metric is inherently dependent on and affected by the choice
of bin widths used to construct the frequency plot. Further-
more, it does not address the innate stochastic nature of
a PDF. We present an alternative method of evaluating
goodness-of-fit of held-out data to the estimated PDF using
log-likelihood. This approach is widely used in statistics
and machine learning [23,30] as a reliable and stochastic met-
ric for deciding which model (from a selection of models) was
most likely—in a probabilistic sense—to have generated the
data [31]. The most likely model is deemed to have the most
predictive skill in describing future observations under similar
atmospheric and experimental conditions. The advantage of
the held-out likelihood test is that it assesses the ability of
the model to generalize to data that was previously unseen
but statistically related to the observed training data.

The rest of this paper is organized as follows. Section 2
presents the results of applying the DP-GaMM to laser beam
propagation data collected in a lab setting at the United States
Naval Academy (USNA). Section 3 discusses the mathemati-
cal development of the DP-GaMM. Parameter inference is
discussed in Section 4. We compare the PDF learned via
the DP-GaMM to classical PDF fitting methods via held-out
log-likelihood in Section 5. Additionally, in the Section 5.B
we demonstrate the DP-GaMM’s versatility by modeling
raw, unprocessed data collected in a maritime environment.
Finally, we conclude in Section 6.

2. BAYESIAN MIXTURES
Mixture models are probability distributions comprised of a
weighted sum of parametrically known distributions, as
shown in Eq. (1) below. Each one of the individual distribu-
tions represents the underlying distribution for a subpopula-
tion of the observed data and is called a mixture component.
In the case of observing light intensity in turbulent atmos-
phere, the data we consider is a time series of light intensity
at a single pixel. Thus, subpopulations in this case are clusters
of similarly valued intensities. The advantage of a mixture
model approach to PDF estimation is in its computational sim-
plicity relative to traditional methods such as [3] and [13]. It
requires neither moments of the data to be computed, nor
environmental or physical factors to be known. Compared
to the conceptually similar KDE, mixture models are charac-
terized by a significantly smaller set of parameters. These
parameters are learned either via expectation maximization
or via Bayesian inference methods. Bayesian approaches such
as variational Bayes [32] and the Gibbs sampler [33] offer the
additional advantage of full posterior distributions on the
model parameters, helping to quantify model parameter
uncertainty.

For a random variable x, a mixture model is defined as

p�xjπ;Φ� � π1f �xjϕ1� � π2f �xjϕ2� � π3f �xjϕ3� � � � � ; (1)

where π � fπkgk�1;2;3;… is a set of mixing weights, Φ �
fϕkgk�1;2;3;… is the set of parameters of the mixture compo-
nents, with ϕk defined as the set of parameters of the kth mix-
ture component f �xjϕk�. The mixing weights are constrained
to sum to 1,

P
kπk � 1, and the mixture components are them-

selves probability distributions of a known form, for example
gamma distributions. Notationally, K denotes the choice of
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the number of mixture components, i.e., k � 1; 2; 3;…; K . No-
tice that K is intentionally omitted in Eq. (1) to make the
expression as general as possible. As discussed in [28], a
key advantage of mixture models is their ability to represent
any distribution within the support space of the mixture
component as K approaches ∞.

In this paper, for the specific application of modeling the
stochastic behavior of light propagating in turbulence, the
mixture components are chosen to be gamma distributions,
following the approach of [3] and [13]. That is, we let
ϕk � fηk; μkg and

f �xjϕk� � Gamma�x; ηk; ηk∕μk�

� �ηk∕μk�ηk
Γ�ηk�

xηk−1 exp
�
−

ηk
μk

x
�
; (2)

where ηk is the shape parameter and μk is the mean of the kth
mixture component. It is straightforward to incorporate differ-
ent, i.e., non-gamma, distributions as mixture components in
the mixture model, and future work will explore the use of
different distributions as mixture components in the analysis
of light scattered in turbulence. We discuss our choice of mix-
ture components more completely in Section 3.B.

Traditionally, estimation of the model parameters π and Φ
is done using the expectation-maximization (EM) framework

[34]. In the mixture model setting, an auxiliary cluster assign-
ment variable z is associated with each observation x and
denotes the subpopulation x belongs to, i.e., z ∈ �1; K � [35].
The EM algorithm iteratively alternates between finding the
expectation (E) step where the observations are assigned
to subpopulations, and the maximization (M) step where, con-
ditioned on the assignments, the model parameters π and Φ
are fitted. The EM mixture model is widely used across
many disciplines as a de facto analysis tool for data clustering
and PDF estimation. For an excellent survey of the field,
see [36].

Despite the popularity of EM mixture models, a notable
drawback is the need to manually set K a priori. This choice
has a significant effect on the resulting behavior of the model.
The affect this choice has is demonstrated on data collected at
the United States Naval Academy in Fig. 1.

Before proceeding, it is worthwhile to give the details of the
data. The data was collected in a controlled turbulence tunnel
at the United States Naval Academy. The tunnel has six inch
square holes in the top and bottom through which air (heated
and unheated) can be blown by a variable speed fan. The
beam is centered over the turbulence. The tunnel is otherwise
closed from the outside. A 5 mm diameter 2 mW 633 nm
He–Ne laser was used, with the distance from transmitter to
the square hole set to 2.14 m. Total distance from transmitter
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Fig. 1. Mixture model with different numbers of mixture components (clockwise from top left K � 2, 5, 20, 10). Mixture components shown in red
and estimated PDF shown in black for Run 1, SI � 7.99 × 10−2. The normalized histogram in gray has area 1.
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to receiver was 4.5 m. The measured temperature inside the
tunnel was 23.6°C, and no additional heat was applied for this
set of experiments. However, the air drawn into the tunnel
was warmer than the air in the tunnel (as desired to cause
some turbulence), due to the equipment operating on the floor
near the tunnel slot. Each run consisted of 3636 frames, taken
using a Ophir-Spiricon CCD Laser Beam Profiler, Model BG-
USB-SP620, operating at 30 Hz, from which we computed the
average hot pixel and extracted our time series from that lo-
cation. For consistency with previous work, we normalized
the data as in [13] and [14] by first subtracting the minimum
intensity of the dataset and then dividing by the mean. As in
[14], we choose to model the average hot pixel. We acknowl-
edge that other methods of averaging or aggregation exist.
However, since the goal of this paper is to discuss a new tool
for estimating PDFs, we have decided to stay consistent with
the methods presented in previous work. Three runs were
conducted in this tunnel with varying fan speeds. For each
run, we computed the scintillation index (SI) as

SI � hI2i
hIi2 − 1; (3)

where I is the intensity of the observed laser light, and h·i de-
notes the empirical mean. To compute the SI and prepare the
data for analysis, the data was normalized by removing the
floor (minimum value) and dividing by the resultant mean.
The three runs yielded SI values of 7.99 × 10−2 (Run 1), 8.42 ×
10−2 (Run 2), and 10.75 × 10−2 (Run 3). We will refer to these
experiments by these names henceforth.

The EM mixture models were trained on the data from Run
1 with several different choices for K (K � 2, 5, 10, 20), and
the resultant PDFs are shown Fig. 1. The behavior of the
model changes from a smooth PDF to a more jagged PDF
as the number of mixture components increases. In theory,
all of these PDFs are representative PDFs of the data.
However, since the choice of K is entirely in the hands of
the modeler, it is often difficult to decide which choice is best.

To address the issue of finding an ideal K , [18] proposed
Bayesian mixtures for density estimation where the PDF in
Eq. (1) is treated as a random mixture by modeling the mix-
ture model as being DP distributed. Such a construction is
denoted hierarchically as

x ∼ G;G ∼ DP�α; G0�; (4)

where the symbol ∼ denotes “drawn from,” and G � p�xjπ;Φ�
is the mixture model defined in Eq. (1) and modeled as a DP-
distributed mixture distribution. Note that by this notation,
x ∼ G is equivalent to p�xjπ;Φ�. The DP-GaMM is described
by Eqs. (1), (2), and (4), with the details of Eq. (4) discussed
in the following sections.

In the Bayesian framework, the parameters of the mixture
G, namely π and Φ, are themselves treated as random varia-
bles. Instead of learning a single maximally likely value for
each model parameter, posterior distributions on both π
and Φ are inferred through a stochastic random walk process
discussed in the following section. As mentioned in the
introduction, an attractive property of the DP-GaMM (and in-
deed, any DP mixture model) is that the number of mixture
components in any mixture model is learned from the data
during the parameter inference process, rather than set a

priori by the modeler.

In Fig. 2, we show the mixture models learned using the
construction sketched in Eq. (4) for the three different data-
sets. In each figure, we show a normalized histogram of the
data (normalized such that the total area under the histogram
is unity) in gray, the PDF p�xjπ;Φ� in black, and the individual
mixture components multiplied by their respective mixing
weights fπkGamma�xn; ηk; ηk∕μk�gk�1;2;3;…;K in the red dashed
lines. It should be noted that the parameter learning and sam-
pling algorithm for Bayesian models is iterative in nature. The
mixtures shown are examples representing only a single iter-
ation of the model. Specifically, we show the sample with the
highest training data likelihood for each run. To fully charac-
terize the posterior distribution on the set of all possible mod-
els, many samples (of the order of 104 iterations or more) need
to be realized. The set of these samples then approximately
characterize the posterior distribution on the space of all pos-
sible solutions and yields valuable information on the uncer-
tainty of the underlying analysis. Application of the inferred
model to predictive tasks is open-ended, depending on the
needs of application. One could, for example, choose the sam-
ple with the highest training set log-likelihood (discussed
later) to use as the PDF. However, this approach discards
the notion of model uncertainty mentioned previously. A more
rigorous method using average held-out log-likelihood is
described in Section 5.

In all experiments within this paper, we set the maximum
number of mixture components, called the truncation level, to
30 and allowed the model to prune out unneeded mixture
components. Notice that the DP-GaMM encourages the result-
ing model to have only a few occupied mixture components
through imposing a clustering on the data. An interesting ob-
servation is that in all experiments the DP-GaMM finds a small
cluster with low intensity (far left side of the PDF’s main lobe).
In the case of Run 3, the model used four mixture compo-
nents, while in Run 1 and Run 2 only three mixture compo-
nents are used to describe the data. Finally, although it is
unnoticeable in the figures, each PDF includes a small addi-
tional mixture component with mean near 0. While we do not
as yet understand the physical phenomenon behind this clus-
ter, its appearance in the analysis is consistent and suggests
that our model may be useful in identifying physical phenom-
ena that are not easily described by traditional heuristic meth-
ods. It is important to note that this truncation does not force
the model to use every mixture component and is simply for
computational purposes. It has been shown that the trunca-
tion level has no effect on the result if it is set sufficiently
large [37].

To demonstrate the flexibility of the DP-GaMM, we found
PDFs of Run 1 using three popular models: gamma-gamma
(GG) [3], gamma (G) [10], and log–normal (LN) [7]. We then
sampled 10,000 observations from each PDF and ran our DP-
GaMM on each dataset. Below in Fig. 3, we demonstrate that
the DP-GaMM can accurately capture the behavior of the
three models by plotting the true distribution (in red) and
the DP-GaMM’s inferred distribution (in black). The gray bars
denote a normalized frequency plot of the data sampled from
the underlying distribution in each case, where the area of the
gray plot has been normalized to 1. These results show that
the GG, G, and LN PDFs can all be viewed as special cases
of the DP-GaMM.
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3. DP-GaMM
We now present the details of the DP-GaMM. Consider the
mixture model in Eq. (1). A DP, denoted by DP�α; G0�, is char-
acterized by a concentration parameter α and a base measure
G0. Draws from a DP are random mixture models, which we
denote byG. LetG �P

kπkδϕk
define a randommixture model

whose full form is defined in Eq. (1). The δϕk
is a Dirac delta

supported at ϕk. Since, in a mixture model, the form of the
mixture components f is defined ahead of time, the mixing
weights π and the Φ are sufficient to define a mixture model.

Recall from the previous section that K , the number of mix-
ture components in G, is assumed infinite in a DP mixture
model. The requirement to have K → ∞means that the result-
ing random mixture model G has an infinite number of mix-
ture components. In theory, because it has an infinite number
of mixture components, a DP-distributed mixture model can
model any distribution, provided that it has the same support
as the mixture components. It is important to note that while
the theoretical number of mixture components is infinite,
only a small, finite number of those mixture components
will have associated weights with appreciable values.

Sampling a random G from a DP is described in the next
section.

A. Stick Breaking Construction of the Dirichlet Process
The task of actually sampling G from DP�α; G0� has been the
subject of much research [23]. A popular method is the con-
structive “stick-breaking” definition of a DP proposed in [25].
This construction utilizes successive “breaks” of a unit length
stick to generate the mixing weights. Hierarchically, this is
written as

x ∼ f �ϕz�;
z ∼Mult�π�;

G �
X∞
k�1

πkδϕk
;

πk � Vk

Y
l<k

�1 − Vl�;

Vk ∼ Beta�1; α�;
ϕk ∼ G0; (5)
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Fig. 2. Estimated DP-GaMM PDFs for three different runs. Mixture components shown in red and estimated PDF shown in black. The normalized
histogram in gray has area 1. Top left: Run 1, SI � 7.99 × 10−2. Top right: Run 2, SI � 8.42 × 10−2. Bottom: Run 3, SI � 10.75 × 10−2.
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where Vk is a beta-distributed random variable that denotes
the proportion of the remaining stick to be “broken,” andQ

l<k�1 − Vl� denotes the amount of the originally unit length
stick remaining after k breaks. Beta�1; α� is a beta distribution,
and α is the concentration parameter of the DP. The selection
of Beta�1; α� is standard for the stick-breaking representation
of DP [25]. Note that Eqs. (4) and (5) are equivalent, with G ∼
DP�α; G0� replaced by the specific construction for the stick-
breaking representation of DP. Hierarchical Bayesian repre-
sentations such as (5) are read from bottom to top, sampling
the random variables from the distributions with hyperpara-
meters (α, and the parameters of G0) set by the modeler at
the bottom to the observed data at the top. In this case,
the base measure G0 is a distribution whose form and param-
eters (the hyperparameters) are set by the modeler. The
mixture component parameters ϕk are drawn independently
and identically distributed from base measure G0. Finally,
in order to sample data x from G, an auxiliary random positive
integer z is introduced where z � k means that x is drawn
from the kth mixture component and Mult�π� is a multinomial

distribution and π � fπkgk�1∶K are the mixing weights drawn
from the stick-breaking construction.

In summary, the generative procedure for the observed
data x via a stick-breaking construction of DP is as follows
[notice that this follows the relations in (5) from bottom
to top]:

• Independently and identically sample ϕk from G0,
for k � 1;…; K .

• Generate the mixing weights by sampling Vk from
Beta�1; α� for k � 1;…; K and constructing the
weights πk � Vk

Q
l<k�1 − Vk�.

• For each observation index n � 1;…; N , sample zn
from Mult�fπkgk�1∶K �.

• For each observation index n � 1;…; N and given zn,
sample the data xn from the distribution f �xnjϕzn �.

The stick-breaking construction of DP makes clear the par-
simonious nature of DP as the πk decreases quickly as k in-
creases. Thus, most of the mass of the model will reside in
a few mixture components with relatively small mixture index
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Fig. 3. Estimated DP-GaMM PDFs using data sampled from gamma–gamma (top left), gamma (top right), and log–normal (bottom). DP-GaMM
PDF is shown in black, sampling PDF is shown in red, and normalized frequency (normalized to area 1) of the sampled data is shown in gray.
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k. In practice, as long as K is set to be sufficiently large such
that unoccupied clusters result after parameter inference, the
model can learn the number of mixture components neces-
sary to represent the data.

Up to this point, the concentration parameter α has been
treated as a constant that is set by the modeler a priori.
Tuning of α gives the modeler some control over the relative
complexity of the resultant model. A larger α results in more
mixture components with appreciable mixing weights and
therefore a more complex model. Conversely, a smaller α re-
sults in a less complex model. In some situations, it is desir-
able to infer α rather than set it. In this case, each mixture
component has an associated αk rather than setting a single
α for all k. The mixture component specific αk is drawn from
a gamma distribution, denoted by αk ∼ Gamma�d; e�. The set-
ting of d and e is chosen by the modeler. In this case, we set
d � e � 10−6. We observe consistent model behavior for
10−6 < d, e < 1, indicating that the model is relatively robust
to choices of d and e.

It is important to note that in this section we outlined the
generative process of a DP mixture model and have not yet
discussed how to actually learn the model parameters. The
key point here is that every variable in the generative process,
aside from xn, is latent and must be uncovered through
Bayesian inference methods such as variational Bayes [32]
or the Gibbs sampler [33]. Moreover, this section presented
a general structure of the DP mixture model, without
specifying a specific distribution form of f �xnjϕk�. The follow-
ing section discusses the choice of defining f �xnjϕk� as
in Eq. (2).

B. Application to Laser Beams Propagating in
Turbulence
Let I � fIngn�1∶N denote the set of N observations of a photo
sensor measuring beam intensity in turbulence. In order to be
consistent with most popular methods of PDF estimation for
laser light in turbulence [3,13,14], the following normalization
is adopted

xn � In
1
N

PN
n�1 In

; (6)

although such normalization is not required for the DP-GaMM.
As previously stated, we make the assumption that the
normalized observations xn are gamma distributed, thus
ϕk � fηk; μkg, where ηk is the shape parameter and μk is the
mean of mixture component k,

f �xnjϕk� �
�ηk∕μk�ηk
Γ�ηk�

xηk−1n exp
�
−

ηk
μk

xn

�
: (7)

As a notational point, note that f �xnjϕk� is equivalent to
xn ∼ f �ϕk�. To complete the Bayesian specification of the
mixture model, we follow [28] and assume that each mixture
component’s shape parameter ηk is exponentially distributed
while the mean μk is inverse-gamma distributed. These
choices are to allow efficient learning of the posterior
distributions on μk and ηk and are discussed in detail in the
following section. The full hierarchical form of DP-GaMM is
given as

xn ∼ Gamma�ηk; ηk∕μk�;
zn ∼Mult�π�;
πk � Vk

Y
l<k

�1 − Vl�;

Vk ∼ Beta�1; α�;
ηk ∼ Exp�a�;
μk ∼ InvGamma�b; c�; (8)

where Exp�·� is the exponential distribution and
InvGamma�·; ·� is the inverse-gamma distribution. A random
variable that is inverse-gamma distributed is one whose recip-
rocal is gamma distributed. In this model, the base measureG0

is defined as

G0 � p�ϕk� � p�ηk; μkja; b; c� � p�ηkja�p�μkjb; c�
� Exp�ηk; a�InvGamma�μk; b; c�; (9)

thus, the base measure G0 is actually a product of two distri-
butions Exp�ηk; a�InvGamma�μk; b; c�.

This construction casts the estimation of the PDF of the xn
in a fully Bayesian context: only the xn are observed, the
parameters fzngn�1∶N and fγk; Vk; ηk; μkgk�1∶K are all treated
as latent random variables whose posterior distributions
(and not simply an optimal value) are estimated during param-
eter inference. By estimating full posterior distributions on the
model parameters, the Bayesian approach naturally quantifies
uncertainty about the model parameters.

4. PARAMETER INFERENCE
Bayesian inference proceeds following Bayes’ rule. In general,
if X are observations distributed as p�XjA�, called the likeli-
hood, and p�A� is a prior distribution on parameters A,
then the posterior distribution of the parameters of interest
p�AjX� is

p�AjX� � p�XjA�p�A�R
p�XjA0�p�A0�dA0 ; (10)

where the denominator
R
p�XjA0�p�A0�dA0 is the normalizing

constant. Computation of this integral is intractable for most
cases. A variety of methods, often based on rejection methods,
have been developed to draw samples from p�AjX� (for a good
review of such methods, see [38]). However, if p�XjA� and
p�A� are selected to be conjugate in nature, then the posterior
p�AjX� will have the same form as the prior p�A� but with up-
dated parameters, allowing analytic iterative updating of the
model parameters. We adopt this conjugacy in most cases of
our parameter inference. In the step where conjugacy cannot
be achieved in our model, we adopt a form of rejection sam-
pling called Metropolis–Hastings sampling [39,40].

In fully conjugate situations, inference can be performed
via approximate variational methods [32] or via the Gibbs
sampler [33]. Variational methods rely on an approximate fac-
torization of the model parameters and have the advantage of
high convergence rate owing to it being a stochastic gradient
ascent algorithm that does not rely on sampling. Gibbs sam-
pling is a stochastic randomwalk algorithm based on Markov–
Chain Monte Carlo and is (at the limit as the number of steps
approaches infinity) a representation of the true posterior. We
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adopt the Gibbs sampler as it is more commonly used in
the statistical community. The full model likelihood of
DP-GaMM is

YN
n�1

p�xnjzn; fγk; Vk; ηk; μkgk�1∶K �

�
YN
n�1

YK
k�1

fp�xnjzn; ηk; μk�p�znjVk�p�Vkjα�…

× p�ηkja�p�μkjb; c�g: (11)

Inference is performed sequentially by cycling through pos-
terior updates and sampling of the latent parameters in order.
We began every run of the DP-GaMM by randomly sampling μk
from InvGamma�μk; 10−3; 10−3� and ηk from Exp�ηk; 1�. Various
initializations were tried, and we found that the model is rel-
atively robust to the choice of initialization settings. The mix-
ing weights π were set to be uniform πk � 1∕K for all k. Next,
we iteratively stepped through the following steps:

• For every observation xn, n � 1;…; N , sample the clus-
ter indicator zn as

zn ∼Mult�ν1; ν2;…; νK �; (12)

where

νk �
πkGamma�xn; ηk; ηk∕μk�PK

k0�1 πk0Gamma�xn; ηk0 ; ηl0∕μk0 �
: (13)

• Sample the Vk from its posterior beta distribution,
k � 1;…; K

Vk ∼ Beta

 
1� Nk; α�

XK
k0�k�1

Nk0

!
; (14)

where Nk �
PN

n�1 1�zn � k� is the number of data points as-
sociated with mixture component k and 1�·� denotes an indi-
cator that is 1 if the argument is true and 0 otherwise. The
mixing weights π are then fully defined as in Eq. (8). If the
concentration parameter is treated as a random variable, then
replace α with αk in the preceding posterior distribution.

• For each mixture component k, k � 1;…; K , sample the
mean μk from its posterior inverse-gamma distribution as

μk ∼ InvGamma
�
b�

XN
n�1

1�zn � k�; c�
XN
n�1

1�zn � k�xn
�
:

(15)

• The posterior of the shape parameter ηk can be shown
to be

p�ηkjfxn; zngn�1∶N; fμkgk�1∶K �

∝
η

P
N
n�1

1�zn�k�ηk
k

Γ�ηk�
P

N
n�1

1�zn�k� exp
�
−ηk

�
a�

P
N
n�1 1�zn � k�xn

μk

� ηk log μk − log
YN
n�1

1�zn � k�xn
��

; (16)

however, since this distribution does not fall into any
known form, sampling from it must be done using Metropolis–
Hastings sampling [39,40]. Following the approach of [28], we

note that for large ηk, Eq. (16) is similar to a gamma density
and therefore adopt a gamma distribution as the proposal dis-
tribution to generate candidate values. In this case, the pro-
posal is generated as ~ηk ∼ Gamma�r; r∕ηk�, where ηk is the
current value of the shape parameter, and r is a tuning param-
eter that is set a priori by the modeler. It should be noted that
the choice of r does not directly affect the posterior distribu-
tion of ηk, since it only controls the statistics of the proposals
~ηk. However, the choice can potentially have a significant im-
pact on the acceptance rate and degree to which the model
mixes. In our experiments, we found a setting of r � 10 to
work well and offer consistently high acceptance rates (above
0.5). Note that the choice of r is a choice made by the modeler
through empirical testing.

The proposed value of ηk is then accepted with probability

min
�
1;
p�~ηkjfxn; zngn�1∶N; fμkgk�1∶K �p�~ηkjr; ηk�
p�ηkjfxn; zngn�1∶N; fμkgk�1∶K �p�ηkjr; ~ηk�

�
; �17�

where p�~ηkjr; ηk� � Gamma�~ηk; r; r∕ηk� and p�ηkjr; ~ηk� �
Gamma�ηk; r; r∕~ηk�.

• If the concentration parameter αk is treated as a random
variable, then the posterior is

αk ∼ Gamma�d� 1; e − log�1 − Vk��; (18)

where log�·� denotes the natural log. Note that this step is
optional. If greater control over the model’s complexity is de-
sired by the modeler, αk can be set to a chosen α determined
by the modeler.

The above steps are repeated iteratively until the model set-
tles into a steady state which can be evaluated by computing
the model likelihood defined in Eq. (11) and observed when
the value stabilizes. It is common practice to discard the first
several thousand samples as a “burn-in” phase to allow the
model to find a suitable stationary distribution on the set of
all G. The subsequent samples are recorded and are referred
to as “collection” samples. Collection samples are then as-
sumed to be samples drawn from the true posterior distribu-
tion of the model. For the results in this paper, we used 5000
iterations as burn-in and 5000 iterations as collection.

5. COMPARISON RESULTS AND
APPLICATION TO MARITIME DATA
A. Comparison Results
In this section, we describe the results of comparing—
both qualitatively and quantitatively via the log-likelihood
metric—the performance of the DP-GaMM against the
gamma-gamma model of [3] (GG), the log–normal distribution
of [7] (LN), and the gamma distribution considered in [10] (G).
All fitting was done as described in [9]. The approach pro-
posed by [13] cannot guarantee non-negativity in the domain
�0;∞�, and so was not considered in this comparison because
the log-likelihood metric is only valid for functions that are
non-negative everywhere and integrate to 1.

The PDFs for the four methods are shown against a 50 bin
normalized histogram in Figs. 4 (Run 1), 5 (Run 2), and 6
(Run 3). As before, the normalization is such that the histo-
gram has area 1 under it. In all three runs, the DP-GaMM offers
better models of the tails than the other three models. The
log–normal distribution in particular seemed to consistently
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overestimate the right-hand (upper) tail of the data, while GG,
gamma, and log–normal all seem to underestimate the left-
hand (lower) tail that the DP-GaMM captures. Additionally,
we note that the GG and gamma models behave very similarly
for all three runs. It seems that in the high SI case (Run 3), the
PDFs seem to agree more with one another than in Runs 1 and
2 (lower SI).

In order to quantitatively compare the performance of dif-
ferent estimators the three runs, we used sixfold held-out
log-likelihood. Held-out log-likelihood is widely accepted in
machine learning and statistics [23,30]. To do so, for each
run we uniform randomly partition each run (time series of
3636 intensity measurements) into one of six (approximately)
equal portions called “folds.” For each round, we learned a
PDF on five of the six folds and computed the log-likelihood
on the remaining held-out fold (for each model considered).
During each round, a different fold was considered as the test-
ing set until each fold had been treated as the testing set

exactly once. We then averaged the held-out log-likelihood
values across all six rounds together to report.

The log-likelihood measures the likelihood that the ob-
served data was actually generated from a particular PDF.
A higher (generally less-negative) held-out log-likelihood
score means better generalization to previously unseen (but
statistically identical) data. The held-out log-likelihood H is
computed as

H �
XM
m�1

log p�x�held-out�m jΩ�; (19)

where Ω is the set of parameters needed to define a PDF, and
m is used to index the set of held-out data. In the case of the
DPMM,Ω � fπ;Φg. For the gamma distribution,Ω is the shape
and scale parameters defined in [9]. For the log–normal dis-
tribution, Ω contains the mean and variance of the log-
intensity. Finally, for GG, Ω is the scale and rate parameters
denoted in [3].

Quantitatively, the held-out log-likelihoods of the four mod-
els across the three datasets is shown below in Table 1. A PDF
with highest (least negative) log-likelihood is considered a
better fit for the held-out data than the others. As mentioned
previously, held-out log-likelihood is a widely used metric in
machine learning and statistics for the quantitative compari-
son of different models. A model that has a high held-out log-
likelihood value is said to generalize well to unseen data and is
therefore regarded as the one best suited to make predictions
on such unseen data in the future. Log-likelihood values are
relative and dimensionless. They only have meaning when the
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Fig. 4. PDFs from various models for Run 1. The normalized histo-
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Table 1. Log-Likelihood Comparison of Various

Models on the Three Runsa

Run GG G LN DP-GaMM

1 −252.5185 −315.1688 −337.5740 −184.7727
2 −186.2339 −250.6055 −215.1999 −109.8983
3 −166.6684 −230.8744 −201.3958 −96.204

aValues are relative (less negative is better) only within a single run and
not across runs. Boldface indicates the best performance.
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partitioned training and testing data is the same across all
models under comparison.

In practice, H is computed as follows. Let Ωt denote the
model parameters at the tth iteration of an MCMC chain, then

H �
XT
t�1

XM
m�1

log p�x�held-out�m jΩt�∕T (20)

is called the mean held-out log-likelihood. This quantity is
what we report for the DP-GaMM, as it considers the held-
out log-likelihood computed at many samples and therefore
characterizes how well the estimated random model general-
izes to unseen data. We do not compute this mean held-out
log-likelihood for the other models in this section as their
parameters are point-estimates.

Table 1 shows that the DP-GaMM outperforms all three
other methods in all runs considered, with the GGmodel com-
ing in second. We note that the performance improvement of
the GGmodel over the gamma and log–normal models is most
likely due to he additional flexibility imposed by the second
gamma distribution. The DP-GaMM offers even more flexibil-
ity than the other models considered and is therefore able to
best represent the data. It is important to mention that an
overly flexible model is also undesirable due to its tendency
to overfit the training data. Such a situation also reduces the
model’s ability to characterize and generalize to unseen but
statistically similar data. The DP-GaMM is, in a sense, balanc-
ing the opposing forces of fitting the training data well but
smoothing the PDF enough that it generalizes well to unseen
data [23].

B. Maritime USNA Data
We also apply DP-GaMM to maritime data collected at the
USNA. In this experiment, a 632.8 nm He–Ne laser was used
over a 314 m laser beam propagation path over water. The
beam was vertically polarized, passed through a beam
expander, and reflected off a 7.68 mm × 7.68 mm spatial light
modulator (SLM). The SLM was used to collect data for future

work and allows for spatial phase modulation of the beam. For
the data considered in this paper, the SLM was set to produce
a fully spatially coherent beam. An amplified photodetector
and data acquisition device were used to collected data at
1 × 104 Hz. The data considered was collected over approxi-
mately two minutes. A scintillometer was used to estimate the
value of C2

n over the propagation path for the test and re-
corded values on the order of 10−14 m−2∕3. The DP-GaMM is
applied to the raw voltage readings from the sensor without
normalization or preprocessing. We do this to demonstrate the
flexible nonparametric nature of the DP-GaMM.

In Fig. 7, we show the PDF (in blue) of the iteration with the
highest training set likelihood. In addition, we show (in red)
100 samples from the collection. Each sample is a PDF, and
the set of all sample PDFs show the posterior distribution of
the PDFs. Notice that the set of sample PDFs seem to suggest
that there is greater uncertainty near the mode (peak) of the
PDF and less uncertainty in the tails. Moreover, the sharp
peaks near 1.15 V occur in only a small number of iterations,
indicating that such PDFs have corresponding low probability
of being the underlying generative model for the observed
data.

It is important to note that while the sample with the high-
est training set likelihood is suitable for choosing a represen-
tative PDF to display, the advantage of the posterior
distribution on the space of all possible PDFs can offer signifi-
cant insight into the resultant model.

6. CONCLUSION AND FUTURE WORK
The DP gamma mixture model was presented as a new
method for modeling the PDF of light scattered in turbulence.
The DP-GaMM directly addresses the issues of parameter
learning and selection through a hierarchical Bayesian con-
struction. Gamma distributions were used for mixture compo-
nents, and a hybrid Metropolis–Hastings/Gibbs sampling
algorithm was developed and presented for parameter infer-
ence. The DP-GaMM was compared to several benchmark
PDF estimation algorithms with favorable results. We also
demonstrated the DP-GaMM on maritime data collected at
the USNA without any normalization or preprocessing, yield-
ing encouraging qualitative results.

Future work using the DP-GaMM will involve incorporating
measurable environmental parameters via a kernel stick-
breaking construction [41] or Bayesian density regression
[42], as well as incorporating time evolution of the mixing
weights [43] to better model changes in the atmosphere.
The goal of this future research will be to generate PDFs that
are functions of measurable environmental parameters. Addi-
tionally, we plan to take advantage of the DP-GaMM’s ability
to estimate high-dimensional PDFs in order to examine multi-
ple pixels within each frame.

A related and equally important direction of research is in
characterizing the quality of fit and physical underpinnings of
the DP-GaMM PDFs in a rigorous manner. Tests such as the
Kolmogorov–Smirnov test would complement the held-out
log-likelihood test presented in this paper to give some mea-
sure of goodness-of-fit to the estimated PDFs. Additionally,
such tests could potentially give insight into the physical
mechanisms that cause discrepancies between learned
PDFs and the empirical data, link DP-GaMM’s mixture com-
ponents to known physical phenomena and helping to provide
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Fig. 7. PDF of raw voltage readings from sensors. The red PDFs are
samples from the collections iterations, and the blue PDF is the sam-
ple with highest training set likelihood. The normalized histogram in
gray has area 1.
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statistical justification for existing or new families of physics
based models.
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