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A class of random sources producing far fields with rectangular intensity profiles is introduced by modeling the
source degree of coherence with the help of two one-dimensional multi-Gaussian distributions. By changing the rms
correlation widths along the x and y directions and the number of terms in the summation of the multi-Gaussian
functions, the shapes and the edge sharpness of the beams can be adjusted. The results based on the derived ana-
lytical expression for the far-zone spectral density are supplemented by the computer simulations. © 2013 Optical
Society of America
OCIS codes: (030.1640) Coherence; (030.6600) Statistical optics; (260.0260) Physical optics.
http://dx.doi.org/10.1364/OL.39.000064

The variety of known models for the source correlation
functions include Gaussian [1], J0-Bessel [2], I0-Bessel [3]
multi-Gaussian [4,5], J0-Bessel–Gaussian, Laguerre–
Gaussian [6], cosine-Gaussian [7], and super-Gaussian
(nonuniform correlations) [8]. All these models lead to
far fields with circular symmetry being either Gaussian,
flat, or ring shaped. In this Letter, we introduce a novel
random source which produces far fields with flat
square/rectangular intensity distributions. Such far fields
may have any intensity distribution in the source plane
but acquire the square/rectangular profile as the field
passes to the far zone. The pattern then remains invariant
on further propagation while enlarges due to diffraction.
The sources and fields of this Letter should not be con-

fused with those considered in [9,10] for which the
source intensity has rectangular profiles and which
change to Gaussian intensity profiles on propagation.
Suppose that a random beam-like field is generated by

a planar source located in the plane z � 0 and propagates
along the positive z direction. In the case when the
source is of Schell-type, its second-order correlation
properties can be characterized by the cross-spectral
density function of the form [1]

W �0��ρ01; ρ02; λ� � �S�0��ρ01; λ�S�0��ρ02; λ��1∕2μ�0��ρ01 − ρ02; λ�;
(1)

where ρ01 � �x01; y01� and ρ02 � �x02; y02� are the two-
dimensional position vectors transverse to the direction
of propagation, S�ρ0; λ� is the spectral density, and
μ�0��ρ01; ρ02; λ� is the spectral degree of coherence. Let
us now choose the spectral degree of coherence to be
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�
are the binomial coefficients, and δx�λ� and

δy�λ� are the rms correlation widths along the x and y
directions that can have quite arbitrary dependence on
the wavelength. In what follows, the spectral dependence
of all the quantities is omitted for brevity.

Figure 1 shows the absolute value of the degree of co-
herence (2) for four selected sets of parameters: (a) and
(b) δx�λ� � δy�λ� � 0.8 mm; (c) and (d) δx�λ� � 1.6 mm,
δy�λ� � 0.56 mm, (a) and (c) M � 1; and (b) and
(d) M � 40.

In order to establish that the source (1)–(3) can be
physically realizable (genuine) we employ the sufficient
condition for the cross-spectral density function derived
in [11]. According to this condition, the cross-spectral
density (1) is genuine if it can be represented as
superposition

Fig. 1. Absolute value of the degree of coherence versus
x01 − x02 (horizontal) and y01 − y02(vertical). The horizontal and
vertical scales extend from −5 mm to 5 mm.
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W �0��x01; y01; x02; y02� �
ZZ

p�vx; vy�H��x01; y01; vx; vy�

×H�x01; y01; vx; vy�dvxdvy: (4)

Here, H is an arbitrary function, the asterisk stands for
complex conjugate, and p is a nonnegative, Fourier-trans-
formable function. For the classic Schell-model
correlations [11]

H�x0; y0; vx; vy� � τ�x0; y0� exp�−2πi�vxx0 � vyy0��; (5)

where τ is the complex amplitude profile. The cross-
spectral density takes on the general form

W �0��x01; y01; x02; y02� � τ��x01; y01�τ�x02; y02�
× ~px�x01 − x02� ~py�y01 − y02�: (6)

Here, the tilde denotes one-dimensional Fourier trans-
form. In order to determine p�vx; vy�, it suffices to calcu-
late the Fourier transform of Eq. (2)
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or alternatively

p�vx; vy� � δxδyf1 − �1 − exp�−δ2xv2x∕2��Mg
× f1 − �1 − exp�−δ2yv2y∕2��Mg∕C2: (8)

Since each of the two functions in the curly brackets is
nonnegative for all the values of their arguments, the
same is true for their product. Thus, the source with cor-
relation (2) is physically realizable. Note that for large
values of M the degree of source coherence μ in Eq. (2)
reduces to a “sinc” function. In fact, it follows directly
from Eq. (8) that functions p and μ are indeed the Fourier
transform pair. Since for large values of M p tends to
form a 2D “rect-function,” μ approaches the “sinc-
function.”
The amplitude profile function in Eq. (5) can be chosen

at will, but in order to derive the analytic formulas we will
set it to be Gaussian
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�
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with σ as its rms source width. From Eqs. (2) and (9) we
obtain for the cross-spectral density (1) the formula
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We will term such a source the Rectangular Gaussian
Schell model (RGSM) source.

The cross-spectral densities in the far field and in the
source plane are related by a simple Fourier transform
relation ([1], p. 240)

W �∞��r1; r2� �
k2 cos θ1 cos θ2 exp�ik�r2 − r1��

�2π�2r1r2
×
ZZ

W �0��ρ01; ρ02� exp�−i�f1 · ρ01
� f2 · ρ02��d2ρ01d2ρ02; (11)

where k � 2π∕λ is the wave number, r1 � r1s1, r2 � r2s2
are the 3D vectors of points in the far zone with magni-
tudes r1 � jr1j, r2 � jr2j, s21 � s22 � 1, cos θ1 � s1z,
cos θ2 � s2z, f1 � −ks1⊥, f2 � ks2⊥, s1⊥ � sin θ1 and
s2⊥ � sin θ2 (see Fig. 2). Since source (10) is separable
in the Cartesian coordinate system, the 2D Fourier trans-
form in Eq. (11) reduces to the product of two 1D trans-
forms and one obtains the result
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where

Fig. 2. Illustration of the notation related to the far field.

January 1, 2014 / Vol. 39, No. 1 / OPTICS LETTERS 65



amx � σ

��������������������������
2mδ2x � 4σ2

mδ2x � 4σ2

s
; bmx �

���������������������
2

mδ2x
� 1

σ2

s
;

cmx � k2σ2mδ2x
mδ2x � 4σ2

; dmx � 2k2σ4

mδ2x � 4σ2
;

amy � σ

��������������������������
2mδ2y � 4σ2

mδ2y � 4σ2

s
; bmy �

���������������������
2

mδ2y
� 1

σ2

s
;

cmy � k2σ2mδ2y
mδ2y � 4σ2

; dmy � 2k2σ4

mδ2y � 4σ2
: (13)

It follows from Eq. (12), with r1 � r2 � r, that the spec-
tral density distribution in the far field takes the form
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Equation (14) implies that in order for the source (10) to
generate a beam-like field its far-field spectral density
must be negligible except for directions within a narrow
solid angle about the z axis [1]. This is so if

exp�−2cxms2x� ≈ 0; and exp�−2cyms2y� ≈ 0; (15)

and hence if
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For valuesm > 1, the inequalities (16) automatically hold
if they do so form � 1. Thus, the beam conditions for the
RGSM sources are
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Figure 3 shows the spectral density of the RGSM
beams in the far zone as a function of position vectors
sx and sy calculated from Eq. (14) for the same sets of
source parameters as in Fig. 1. For sufficiently large val-
ues of index M (for example 40), the spectral density
acquires profiles with Cartesian symmetry.
The RGSM sources can be synthesized either by a

method recently proposed in [12] or by reflecting a laser
beam from the liquid crystal spatial light modulator
(SLM) which acts as a random amplitude and/or phase
plate with prescribed statistics [13,14]. For visual pur-
poses, we will outline the latter approach by constructing
a single realization of the amplitude screen and by
obtaining the corresponding realization of the far field
with the help of the 2D fast Fourier transform (FFT).
A 2D amplitude screen with the single-point Gaussian

statistics and the two-point correlation function (2) can
be constructed by convolving a 2D array of normally dis-
tributed random variables with the window function (2)
[13]. The result of this procedure applied to the SLM

screen with generic 512 × 512 pixels is shown in Fig. 4
with the following parameters: (a) and (b) δx�λ� �
δy�λ� � 2 pixels; (c) and (d) δx�λ� � 1.4 pixels, δy�λ� �
4 pixels; (a) and (c) M � 1; and (b) and (d) M � 40.
The structure and the size of the speckles on the ampli-
tude screens change as index M grows and as the rms
correlations δx�λ� and δy�λ� are modified.

In cases when σ ≪ δx and σ ≪ δy, the source (10) can
be regarded as quasi-homogeneous. Hence, on the basis
of the well-known for such sources reciprocity relations
[1], its far field spectral density is proportional to the
source degree of coherence. Hence, on taking the FFT

Fig. 3. Spectral density of the RGSM beams in the far zone of
sources with parameters as in Fig. 1. The horizontal and vertical
axes extend from −1 mm to 1 mm.

Fig. 4. Computer simulations of the random amplitude distri-
bution for generation of sources with the degree of coherence
(1), corresponding to Figs. 1 and 3.

66 OPTICS LETTERS / Vol. 39, No. 1 / January 1, 2014



of the screens in Fig. 3 we can obtain the corresponding
realizations of the far fields produced by the RGSM
source (see Fig. 5). The comparison between Figs. 3
and 5 shows that the analytical result (14) and the
simulation obviously produce similar results: averaging
over sufficiently many distributions in Fig. 5 provides
the sharp images of Fig. 3. It should be noted that even
though the scales in Figs. 3 and 5 are different (the for-
mer is presented in mm and the later in pixels), the ratios
of parameters were taken to be the same for each sub-
figure leading to the same geometrical profiles of the
far fields.
In summary, random sources with properly chosen de-

gree of coherence can produce far fields having intensity
distributions with Cartesian symmetry, i.e., being either
squares or rectangles. The suggested form of the degree
of coherence (2) is a separable function in x and y direc-
tions, while both contributions are modeled as sums of
weighted Gaussian functions with the same (leading to
squares) or different (to rectangles) rms widths. We have
illustrated that the function (2) describes the physically
realizable random source, named the RGSM source. The
analytic expression for far-field cross-spectral density
for the RGSM source has been derived and the beam

conditions have been established. Since the RGSM
source is based on superposition of Gaussian functions,
one benefits from its tractability on passage through
optical systems and various media.

The summation indexM provides a convenient tool for
adjusting the beam’s edge sharpness. In this Letter, the
index M is assumed to be equal along the x and y direc-
tions. However, such an assumption can be readily
removed leading to more flexibility in adjusting the
sharpness of different edges. The far fields with Cartesian
symmetry generated by the RGSM sources are shape-
invariant throughout the far zone. This is the unique
feature that distinguishes them from all previously intro-
duced rectangular flat-top beams whose intensity
profiles are preserved only in close proximity to their
sources.

The results of this work are of particular importance
for a number of applications in which a field with rectan-
gular symmetry must be generated from a source with
arbitrary intensity distribution at a sufficiently large
distance. Such applications can include free-space and
atmospheric optical communications, imaging, and
optical material surface processing.
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Fig. 5. Computer simulations of the far fields produced by
sources with the degree of coherence (1). The source parame-
ters are the same as in Fig. 4.
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