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INTRODUCTION  

 Field Test off of 

Atlantic Coast 

 2 – 22 km optical 

horizon 

 Bi-directional shore-to-

ship data link between 

old 56’ Coast Guard 

lookout tower and JHU 

Applied Physics 

Laboratory (APL) 

research vessel, 

“Chessie”. 

Movie Clip 

Chessie, “Speck” 

FSOWallopsTest 080.MOV


EXPERIMENTAL  

SET-UP 

 1.0” Adaptive Optics (AO) 

Power-in-Fiber (PIF) as 

will as 0.25” and 1.0” 

Power-in-Bucket (PIB). 

 IR images were collected 

on screen attached to 

“Chessie” tracking mount 1.0” PIB 

0.25” PIB 

1.0” PIF AO 



GOALS: 

Can we best determine the PDF in the maritime 

environment as a:   

o 1) Function of propagation distance 

o 2) Function of three optical detectors – 0.25”, 1.0”, as 

well as for a 1.0” Adaptive Optics (AO) Terminal 

o 3) Function of varying levels of optical turbulence. 



THEORY AND EXPERIMENT 

 Understanding the PDF 

is a critical link for Free 

Space Optical 

Communications (FSO) 

through the bit-error rate 

(BER)  

 The IR profiles highlight 

the rapidly varying 

nature of the intensity 

profile of a propagating 

laser beam in the 

maritime environment. 
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Movie Clip 

July data 

5.1 km 17.8 km 

The challenge of the Maritime 

Environment 

Relatively benign 

1503-7.5nmi.avi


THEORY AND  

ANALYSIS 

 Gamma-Laguerre (GL) 

 Medium and source 
independent, no free 
parameters  

 Uses first n moments 

 Gamma-Gamma (GG) 

 Free parameters 
related to medium 

 Source, medium 
dependent 

 Uses first two moments 

 Lognormal (LN) 

 Classical weak 
turbulence model 
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EXPERIMENTAL  

DATA/RESULTS 

 Low Turbulence – 

(Cn
2~1.5*10-14 m-2/3) 

 1.0” PIF AO 

 5.1 km to 17.8 km 

 Good data fits in 

low turbulence 

across all of the 

distributions 

 Note – this is 

aperture averaged 

data 

LSE LN – 0.975 
LSE GG – 0.805 
LSE GL – 0.775 

**Tail – 1st 30 bins** 
LSE LN – 0.0343 
LSE GG – 0.0225 
LSE GL – 0.0149 

LSE LN – 1.606 
LSE GG – 0.595 
LSE GL – 0.324 
**Tail – 1st 30 

bins** 
LSE LN – 0.552 
LSE GG – 0.269 
LSE GL – 0.0574 

Black Solid – GL 

Blue (o) – GG 

Green (--) – LN 

Histogram – red dots 

GL had best LSE fit  



EXPERIMENTAL  

DATA/RESULTS 

 Low Turbulence 

 0.25” PIB 

 5.1km to 17.8 km 

 At short range, 0.25” 

PIB detector is on 

the fringes of beam 

(yellow arrow) – GL 

still did well 

 Long range GL 

underestimates peak 

 Similar results were 

seen for the 1.0” PIB 

 

LSE LN – 2.119 
LSE GG – 1.560 
LSE GL – 0.367 

**Tail – 1st 30 bins** 
LSE LN – 0.154 
LSE GG – 0.406 
LSE GL – 0.0127 

LSE LN – 1.082 
LSE GG – 0.415 
LSE GL – 0.484 

**Tail – 1st 30 bins ** 
LSE LN – 0.346 
LSE GG – 0.121 
LSE GL – 0.107 

GG - best overall fit (17.8 km)  

GL – best tail fit (17.8 km) 

Black Solid – GL 

Blue (o) – GG 

Green (--) – LN 

Histogram – red dots 



EXPERIMENTAL  

DATA/RESULTS 

 Low to moderate 

turbulence,  

(Cn
2~8*10-15 m-2/3 and 

~4*10-14 m-2/3 

 1.0” PIF AO 

 6.9 km to 10.5 km 

 Good fits by all 

modeled 

distributions at short 

range with noticeable 

spread at longer 

range 

LSE LN – 0.979 
LSE GG – 0.757 
LSE GL – 0.704 

**Tail – 1st 30 bins ** 
LSE LN – 0.0402 
LSE GG – 0.0247 
LSE GL – 0.0173 

LSE LN – 1.343 
LSE GG – 0.742 
LSE GL – 0.550 

**Tail – 1st 30 bins ** 
LSE LN – 0.618 
LSE GG – 0.330 
LSE GL – 0.139 

GL – overall best LSE fit 

Black Solid – GL 

Blue (o) – GG 

Green (--) – LN 

Histogram – red dots 



EXPERIMENTAL  

DATA/RESULTS 

 Low to moderate 

turbulence 

 0.25” PIB 

 6.9 km to 10.5 km 

 Good fit at short 

range with larger 

spread at longer 

range 

 GL understimates 

the peak (this is 

mentioned in paper 

by Barakat) 

LSE LN – 0.946 
LSE GG – 0.561 
LSE GL – 0.517 

**Tail – 1st 30 bins ** 
LSE LN – 0.0324 
LSE GG – 0.0216 
LSE GL – 0.00241 

LSE LN – 1.179 
LSE GG – 1.087 
LSE GL – 0.875 

**Tail – 1st 30 bins ** 
LSE LN – 0.549 
LSE GG – 0.587 
LSE GL – 0.398 

GL – overall best LSE fit   

Black Solid – GL 

Blue (o) – GG 

Green (--) – LN 

Histogram – red dots 



EXPERIMENTAL  

DATA/RESULTS 

 Low to moderate 

turbulence 

 1.0” PIB 

 6.9 km 

 The 1.0” PIB in this 

region had a very good 

Lognormal fit – this 

can be reasonably 

expected from 

additional aperture 

averaging where the 

small scale fluctuations 

are averaged out, 

leaving the large scale 

distribution 

LSE LN – 0.573 
LSE GG – 1.452 
LSE GL – 0.800 

**Tail – 1st 30 bins ** 
LSE LN – 0.00686 
LSE GG – 0.266 
LSE GL – 0.0624 

LN – overall best LSE fit 

Black Solid – GL 

Blue (o) – GG 

Green (--) – LN 

Histogram – red dots 



CONCLUSIONS/DISCUSSION 
 Three PDF models (LN, GG, GL) and their fits to data 

collected in the maritime environment 

 Low turbulence 

 Excellent fits by all models at short range for 1.0” PIF 

 Good LN fit supports historical for distribution in 

regions of weak irradiance fluctuation 

 Off axis robustness shown by GL for the 0.25” PIB 

 Low-moderate turbulence 

 Similar distributions in 0.25” PIB vs. 1.0” PIF (possible 

sm fiber acting as a spatial frequency filter)   

 GL showed overall best fit – exception 1.0” PIB (LN) 

 Detector size 

 Aperture averaging in 1.0” PIB  LN (large scale PDF) 
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